IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v262y2017i1p322-334.html
   My bibliography  Save this article

Linear programming-based directed local search for expensive multi-objective optimization problems: Application to drinking water production plants

Author

Listed:
  • Capitanescu, F.
  • Marvuglia, A.
  • Benetto, E.
  • Ahmadi, A.
  • Tiruta-Barna, L.

Abstract

Local search (LS) is an essential module of most hybrid meta-heuristic evolutionary algorithms which are a major approach aimed to solve efficiently multi-objective optimization (MOO) problems. Furthermore, LS is specifically useful in many real-world applications where there is a need only to improve a current state of a system locally with limited computational budget and/or relying on computationally expensive process simulators. In these contexts, this paper proposes a new neighborhood-based iterative LS method, relying on first derivatives approximation and linear programming (LP), aiming to steer the search along any desired direction in the objectives space. The paper also leverages the directed local search (DS) method to constrained MOO problems. These methods are applied to the bi-objective (cost versus life cycle assessment-based environmental impact) optimization of drinking water production plants. The results obtained show that the proposed method constitutes a promising local search method which clearly outperforms the directed search approach.

Suggested Citation

  • Capitanescu, F. & Marvuglia, A. & Benetto, E. & Ahmadi, A. & Tiruta-Barna, L., 2017. "Linear programming-based directed local search for expensive multi-objective optimization problems: Application to drinking water production plants," European Journal of Operational Research, Elsevier, vol. 262(1), pages 322-334.
  • Handle: RePEc:eee:ejores:v:262:y:2017:i:1:p:322-334
    DOI: 10.1016/j.ejor.2017.03.057
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221717302795
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2017.03.057?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kleijnen, Jack P.C., 2017. "Regression and Kriging metamodels with their experimental designs in simulation: A review," European Journal of Operational Research, Elsevier, vol. 256(1), pages 1-16.
    2. Mlakar, Miha & Petelin, Dejan & Tušar, Tea & Filipič, Bogdan, 2015. "GP-DEMO: Differential Evolution for Multiobjective Optimization based on Gaussian Process models," European Journal of Operational Research, Elsevier, vol. 243(2), pages 347-361.
    3. Dächert, Kerstin & Klamroth, Kathrin & Lacour, Renaud & Vanderpooten, Daniel, 2017. "Efficient computation of the search region in multi-objective optimization," European Journal of Operational Research, Elsevier, vol. 260(3), pages 841-855.
    4. Binois, M. & Ginsbourger, D. & Roustant, O., 2015. "Quantifying uncertainty on Pareto fronts with Gaussian process conditional simulations," European Journal of Operational Research, Elsevier, vol. 243(2), pages 386-394.
    5. Lin, Qiuzhen & Li, Jianqiang & Du, Zhihua & Chen, Jianyong & Ming, Zhong, 2015. "A novel multi-objective particle swarm optimization with multiple search strategies," European Journal of Operational Research, Elsevier, vol. 247(3), pages 732-744.
    6. Gebreslassie, Berhane H. & Guillén-Gosálbez, Gonzalo & Jiménez, Laureano & Boer, Dieter, 2009. "Design of environmentally conscious absorption cooling systems via multi-objective optimization and life cycle assessment," Applied Energy, Elsevier, vol. 86(9), pages 1712-1722, September.
    7. Oliver Schütze & Víctor Adrián Sosa Hernández & Heike Trautmann & Günter Rudolph, 2016. "The hypervolume based directed search method for multi-objective optimization problems," Journal of Heuristics, Springer, vol. 22(3), pages 273-300, June.
    8. Jaeggi, D.M. & Parks, G.T. & Kipouros, T. & Clarkson, P.J., 2008. "The development of a multi-objective Tabu Search algorithm for continuous optimisation problems," European Journal of Operational Research, Elsevier, vol. 185(3), pages 1192-1212, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Subrata Mitra & Balram Avittathur, 2018. "Application of linear programming in optimizing the procurement and movement of coal for an Indian coal-fired power-generating company," DECISION: Official Journal of the Indian Institute of Management Calcutta, Springer;Indian Institute of Management Calcutta, vol. 45(3), pages 207-224, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Duro, João A. & Ozturk, Umud Esat & Oara, Daniel C. & Salomon, Shaul & Lygoe, Robert J. & Burke, Richard & Purshouse, Robin C., 2023. "Methods for constrained optimization of expensive mixed-integer multi-objective problems, with application to an internal combustion engine design problem," European Journal of Operational Research, Elsevier, vol. 307(1), pages 421-446.
    2. Dereje S. Ayou & Valerie Eveloy, 2020. "Integration of Municipal Air-Conditioning, Power, and Gas Supplies Using an LNG Cold Exergy-Assisted Kalina Cycle System," Energies, MDPI, vol. 13(18), pages 1-31, September.
    3. Abdullah, Mohammad Omar & Hieng, Tang Chung, 2010. "Comparative analysis of performance and techno-economics for a H2O-NH3-H2 absorption refrigerator driven by different energy sources," Applied Energy, Elsevier, vol. 87(5), pages 1535-1545, May.
    4. Satya Tamby & Daniel Vanderpooten, 2021. "Enumeration of the Nondominated Set of Multiobjective Discrete Optimization Problems," INFORMS Journal on Computing, INFORMS, vol. 33(1), pages 72-85, January.
    5. Alfredo Alcayde & Raul Baños & Francisco M. Arrabal-Campos & Francisco G. Montoya, 2019. "Optimization of the Contracted Electric Power by Means of Genetic Algorithms," Energies, MDPI, vol. 12(7), pages 1-13, April.
    6. Pasta, Edoardo & Faedo, Nicolás & Mattiazzo, Giuliana & Ringwood, John V., 2023. "Towards data-driven and data-based control of wave energy systems: Classification, overview, and critical assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    7. Xiangang Cao & Pengfei Li & Song Ming, 2021. "Remaining Useful Life Prediction-Based Maintenance Decision Model for Stochastic Deterioration Equipment under Data-Driven," Sustainability, MDPI, vol. 13(15), pages 1-19, July.
    8. Zare, V. & Mahmoudi, S.M.S. & Yari, M. & Amidpour, M., 2012. "Thermoeconomic analysis and optimization of an ammonia–water power/cooling cogeneration cycle," Energy, Elsevier, vol. 47(1), pages 271-283.
    9. Song, Zhouzhou & Zhang, Hanyu & Liu, Zhao & Zhu, Ping, 2023. "A two-stage Kriging estimation variance reduction method for efficient time-variant reliability-based design optimization," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
    10. Kerstin Dächert & Ria Grindel & Elisabeth Leoff & Jonas Mahnkopp & Florian Schirra & Jörg Wenzel, 2022. "Multicriteria asset allocation in practice," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 44(2), pages 349-373, June.
    11. Cui, Yunfei & Geng, Zhiqiang & Zhu, Qunxiong & Han, Yongming, 2017. "Review: Multi-objective optimization methods and application in energy saving," Energy, Elsevier, vol. 125(C), pages 681-704.
    12. Kusiak, Andrew & Xu, Guanglin & Tang, Fan, 2011. "Optimization of an HVAC system with a strength multi-objective particle-swarm algorithm," Energy, Elsevier, vol. 36(10), pages 5935-5943.
    13. Shen, Xin & Chen, Jin-Ge & Zhu, Xiao-Cheng & Liu, Peng-Yin & Du, Zhao-Hui, 2015. "Multi-objective optimization of wind turbine blades using lifting surface method," Energy, Elsevier, vol. 90(P1), pages 1111-1121.
    14. Ying Sun & Yuelin Gao, 2019. "A Multi-Objective Particle Swarm Optimization Algorithm Based on Gaussian Mutation and an Improved Learning Strategy," Mathematics, MDPI, vol. 7(2), pages 1-16, February.
    15. Sylvain Barde & Sander Van Der Hoog, 2017. "An empirical validation protocol for large-scale agent-based models," Sciences Po publications 17/12, Sciences Po.
    16. Rivier, M. & Congedo, P.M., 2022. "Surrogate-Assisted Bounding-Box approach applied to constrained multi-objective optimisation under uncertainty," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
    17. Doğan, Ilgın & Lokman, Banu & Köksalan, Murat, 2022. "Representing the nondominated set in multi-objective mixed-integer programs," European Journal of Operational Research, Elsevier, vol. 296(3), pages 804-818.
    18. Liu, Ruochen & Li, Jianxia & fan, Jing & Mu, Caihong & Jiao, Licheng, 2017. "A coevolutionary technique based on multi-swarm particle swarm optimization for dynamic multi-objective optimization," European Journal of Operational Research, Elsevier, vol. 261(3), pages 1028-1051.
    19. J.-J. Sinou & L. Nechak & S. Besset, 2018. "Kriging Metamodeling in Rotordynamics: Application for Predicting Critical Speeds and Vibrations of a Flexible Rotor," Complexity, Hindawi, vol. 2018, pages 1-26, March.
    20. Mesquita-Cunha, Mariana & Figueira, José Rui & Barbosa-Póvoa, Ana Paula, 2023. "New ϵ−constraint methods for multi-objective integer linear programming: A Pareto front representation approach," European Journal of Operational Research, Elsevier, vol. 306(1), pages 286-307.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:262:y:2017:i:1:p:322-334. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.