IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v258y2017i3p1131-1142.html
   My bibliography  Save this article

The windy rural postman problem with a time-dependent zigzag option

Author

Listed:
  • Nossack, Jenny
  • Golden, Bruce
  • Pesch, Erwin
  • Zhang, Rui

Abstract

In this research, we focus on the windy rural postman problem with the additional option to zigzag street segments during certain times of the day. If a street is narrow or traffic is light, it is possible (and often desirable) to service both sides of the street in a single pass by zigzagging. However, if a street is wide or traffic is heavy, we must service the street by two single traversals. For some streets, we further impose the restriction that they may only be zigzagged at specific times of the day, e.g., in the early morning when there is virtually no traffic. Real-life applications arise, among others, in trash collection and newspaper delivery. This specific arc routing problem combines two classes of problems known from the literature, arc routing problems with zigzag options and arc routing problems with time dependencies. We present and discuss two (mixed) integer programming formulations for the problem at hand and suggest exact solution approaches. Furthermore, we analyze the effects of zigzag and time window options on the objective function value and test our solution approaches on real-world instances.

Suggested Citation

  • Nossack, Jenny & Golden, Bruce & Pesch, Erwin & Zhang, Rui, 2017. "The windy rural postman problem with a time-dependent zigzag option," European Journal of Operational Research, Elsevier, vol. 258(3), pages 1131-1142.
  • Handle: RePEc:eee:ejores:v:258:y:2017:i:3:p:1131-1142
    DOI: 10.1016/j.ejor.2016.09.010
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221716307469
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2016.09.010?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lawrence D. Bodin & Samuel J. Kursh, 1978. "A Computer-Assisted System for the Routing and Scheduling of Street Sweepers," Operations Research, INFORMS, vol. 26(4), pages 525-537, August.
    2. Tagmouti, Mariam & Gendreau, Michel & Potvin, Jean-Yves, 2007. "Arc routing problems with time-dependent service costs," European Journal of Operational Research, Elsevier, vol. 181(1), pages 30-39, August.
    3. Letchford, A.N. & Eglese, R.W., 1998. "The rural postman problem with deadline classes," European Journal of Operational Research, Elsevier, vol. 105(3), pages 390-400, March.
    4. Irnich, Stefan, 2008. "Solution of real-world postman problems," European Journal of Operational Research, Elsevier, vol. 190(1), pages 52-67, October.
    5. Johnson, Ellis L. & Wøhlk, Sanne, 2009. "Solving the Capacitated Arc Routing Problem with Time Windows using Column Generation," CORAL Working Papers L-2008-09, University of Aarhus, Aarhus School of Business, Department of Business Studies.
    6. Sanjeeb Dash & Oktay Günlük & Andrea Lodi & Andrea Tramontani, 2012. "A Time Bucket Formulation for the Traveling Salesman Problem with Time Windows," INFORMS Journal on Computing, INFORMS, vol. 24(1), pages 132-147, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jianbin Xin & Benyang Yu & Andrea D’Ariano & Heshan Wang & Meng Wang, 2022. "Time-dependent rural postman problem: time-space network formulation and genetic algorithm," Operational Research, Springer, vol. 22(3), pages 2943-2972, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lu, Jiawei & Nie, Qinghui & Mahmoudi, Monirehalsadat & Ou, Jishun & Li, Chongnan & Zhou, Xuesong Simon, 2022. "Rich arc routing problem in city logistics: Models and solution algorithms using a fluid queue-based time-dependent travel time representation," Transportation Research Part B: Methodological, Elsevier, vol. 166(C), pages 143-182.
    2. Ciancio, Claudio & Laganá, Demetrio & Vocaturo, Francesca, 2018. "Branch-price-and-cut for the Mixed Capacitated General Routing Problem with Time Windows," European Journal of Operational Research, Elsevier, vol. 267(1), pages 187-199.
    3. Cerrone, Carmine & Dussault, Benjamin & Wang, Xingyin & Golden, Bruce & Wasil, Edward, 2019. "A two-stage solution approach for the Directed Rural Postman Problem with Turn Penalties," European Journal of Operational Research, Elsevier, vol. 272(2), pages 754-765.
    4. Korteweg, Peter & Volgenant, Ton, 2006. "On the Hierarchical Chinese Postman Problem with linear ordered classes," European Journal of Operational Research, Elsevier, vol. 169(1), pages 41-52, February.
    5. Colombi, Marco & Corberán, Ángel & Mansini, Renata & Plana, Isaac & Sanchis, José M., 2017. "The Hierarchical Mixed Rural Postman Problem: Polyhedral analysis and a branch-and-cut algorithm," European Journal of Operational Research, Elsevier, vol. 257(1), pages 1-12.
    6. Timo Hintsch, 2019. "Large Multiple Neighborhood Search for the Soft-Clustered Vehicle-Routing Problem," Working Papers 1904, Gutenberg School of Management and Economics, Johannes Gutenberg-Universität Mainz.
    7. Maria Fleischer Fauske & Carlo Mannino & Paolo Ventura, 2020. "Generalized Periodic Vehicle Routing and Maritime Surveillance," Transportation Science, INFORMS, vol. 54(1), pages 164-183, January.
    8. Chuck Holland & Jack Levis & Ranganath Nuggehalli & Bob Santilli & Jeff Winters, 2017. "UPS Optimizes Delivery Routes," Interfaces, INFORMS, vol. 47(1), pages 8-23, February.
    9. Taş, D. & Gendreau, M. & Dellaert, N. & van Woensel, T. & de Kok, A.G., 2014. "Vehicle routing with soft time windows and stochastic travel times: A column generation and branch-and-price solution approach," European Journal of Operational Research, Elsevier, vol. 236(3), pages 789-799.
    10. Jesica Armas & Peter Keenan & Angel A. Juan & Seán McGarraghy, 2019. "Solving large-scale time capacitated arc routing problems: from real-time heuristics to metaheuristics," Annals of Operations Research, Springer, vol. 273(1), pages 135-162, February.
    11. Thibaut Vidal & Rafael Martinelli & Tuan Anh Pham & Minh Hoàng Hà, 2021. "Arc Routing with Time-Dependent Travel Times and Paths," Transportation Science, INFORMS, vol. 55(3), pages 706-724, May.
    12. Fung, Richard Y.K. & Liu, Ran & Jiang, Zhibin, 2013. "A memetic algorithm for the open capacitated arc routing problem," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 50(C), pages 53-67.
    13. Jessica Rodríguez-Pereira & Gilbert Laporte, 2022. "The target visitation arc routing problem," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 30(1), pages 60-76, April.
    14. John S. F. Lyons & Peter C. Bell & Mehmet A. Begen, 2018. "Solving the Whistler-Blackcomb Mega Day Challenge," Interfaces, INFORMS, vol. 48(4), pages 323-339, August.
    15. Margarita P. Castro & Andre A. Cire & J. Christopher Beck, 2020. "An MDD-Based Lagrangian Approach to the Multicommodity Pickup-and-Delivery TSP," INFORMS Journal on Computing, INFORMS, vol. 32(2), pages 263-278, April.
    16. Labelle, A. & Langevin, A. & Campbell, J. F., 2002. "Sector design for snow removal and disposal in urban areas," Socio-Economic Planning Sciences, Elsevier, vol. 36(3), pages 183-202, September.
    17. Natashia L. Boland & Martin W. P. Savelsbergh, 2019. "Perspectives on integer programming for time-dependent models," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 27(2), pages 147-173, July.
    18. Hintsch, Timo & Irnich, Stefan, 2018. "Large multiple neighborhood search for the clustered vehicle-routing problem," European Journal of Operational Research, Elsevier, vol. 270(1), pages 118-131.
    19. Natashia Boland & Riley Clement & Hamish Waterer, 2016. "A Bucket Indexed Formulation for Nonpreemptive Single Machine Scheduling Problems," INFORMS Journal on Computing, INFORMS, vol. 28(1), pages 14-30, February.
    20. Jinghao Sun & Yakun Meng & Guozhen Tan, 2015. "An integer programming approach for the Chinese postman problem with time-dependent travel time," Journal of Combinatorial Optimization, Springer, vol. 29(3), pages 565-588, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:258:y:2017:i:3:p:1131-1142. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.