IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v257y2017i3p763-772.html
   My bibliography  Save this article

Two new stochastic models of the failure process of a series system

Author

Listed:
  • Wu, Shaomin
  • Scarf, Philip

Abstract

Consider a series system consisting of sockets into each of which a component is inserted: if a component fails, it is replaced with a new identical one immediately and system operation resumes. An interesting question is: how to model the failure process of the system as a whole when the lifetime distribution of each component is unknown? This paper attempts to answer this question by developing two new models, for the cases of a specified and an unspecified number of sockets, respectively. It introduces the concept of a virtual component, which corresponds to the part of the system that is replaced upon system failure. It then discusses the probabilistic properties of the models and methods for parameter estimation. Based on six datasets of artificially generated system failures and a real-world dataset, the paper compares the performance of the proposed models with four other commonly used models: the renewal process, the geometric process, Kijima’s generalised renewal process, and the power law process. The results show that the proposed models outperform these comparators on the datasets, based on the Akaike information criterion.

Suggested Citation

  • Wu, Shaomin & Scarf, Philip, 2017. "Two new stochastic models of the failure process of a series system," European Journal of Operational Research, Elsevier, vol. 257(3), pages 763-772.
  • Handle: RePEc:eee:ejores:v:257:y:2017:i:3:p:763-772
    DOI: 10.1016/j.ejor.2016.07.052
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221716306075
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2016.07.052?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhang, Mimi & Gaudoin, Olivier & Xie, Min, 2015. "Degradation-based maintenance decision using stochastic filtering for systems under imperfect maintenance," European Journal of Operational Research, Elsevier, vol. 245(2), pages 531-541.
    2. Wu, Shaomin & Scarf, Philip, 2015. "Decline and repair, and covariate effects," European Journal of Operational Research, Elsevier, vol. 244(1), pages 219-226.
    3. Asfaw, Zeytu Gashaw & Lindqvist, Bo Henry, 2015. "Extending minimal repair models for repairable systems: A comparison of dynamic and heterogeneous extensions of a nonhomogeneous Poisson process," Reliability Engineering and System Safety, Elsevier, vol. 140(C), pages 53-58.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Chao & Xu, Xin & Dui, Hongyan, 2020. "Analysis of network cascading failure based on the cluster aggregation in cyber-physical systems," Reliability Engineering and System Safety, Elsevier, vol. 202(C).
    2. Do, Phuc & Assaf, Roy & Scarf, Phil & Iung, Benoit, 2019. "Modelling and application of condition-based maintenance for a two-component system with stochastic and economic dependencies," Reliability Engineering and System Safety, Elsevier, vol. 182(C), pages 86-97.
    3. Syamsundar, A. & Naikan, V.N.A. & Wu, Shaomin, 2020. "Alternative scales in reliability models for a repairable system," Reliability Engineering and System Safety, Elsevier, vol. 193(C).
    4. Junyuan Wang & Jimin Ye & Qianru Ma & Pengfei Xie, 2022. "An extended geometric process repairable model with its repairman having vacation," Annals of Operations Research, Springer, vol. 311(1), pages 401-415, April.
    5. Yang, Li & Ye, Zhi-sheng & Lee, Chi-Guhn & Yang, Su-fen & Peng, Rui, 2019. "A two-phase preventive maintenance policy considering imperfect repair and postponed replacement," European Journal of Operational Research, Elsevier, vol. 274(3), pages 966-977.
    6. Nafisah, Ibrahim & Shrahili, Mansour & Alotaibi, Naif & Scarf, Phil, 2019. "Virtual series-system models of imperfect repair," Reliability Engineering and System Safety, Elsevier, vol. 188(C), pages 604-613.
    7. Shen, Jingyuan & Cui, Lirong & Ma, Yizhong, 2019. "Availability and optimal maintenance policy for systems degrading in dynamic environments," European Journal of Operational Research, Elsevier, vol. 276(1), pages 133-143.
    8. Junyuan Wang & Jimin Ye & Liang Wang, 2022. "Extended age maintenance models and its optimization for series and parallel systems," Annals of Operations Research, Springer, vol. 312(1), pages 495-517, May.
    9. Wu, Shaomin, 2021. "Two methods to approximate the superposition of imperfect failure processes," Reliability Engineering and System Safety, Elsevier, vol. 207(C).
    10. Jiang, R., 2020. "A novel two-fold sectional approximation of renewal function and its applications," Reliability Engineering and System Safety, Elsevier, vol. 193(C).
    11. Wenke Gao, 2020. "An extended geometric process and its application in replacement policy," Journal of Risk and Reliability, , vol. 234(1), pages 88-103, February.
    12. Wu, Shaomin, 2019. "A failure process model with the exponential smoothing of intensity functions," European Journal of Operational Research, Elsevier, vol. 275(2), pages 502-513.
    13. Renyan Jiang, 2022. "A novel parameter estimation method for the Weibull distribution on heavily censored data," Journal of Risk and Reliability, , vol. 236(2), pages 307-316, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhou, Xiaojun & Wu, Changjie & Li, Yanting & Xi, Lifeng, 2016. "A preventive maintenance model for leased equipment subject to internal degradation and external shock damage," Reliability Engineering and System Safety, Elsevier, vol. 154(C), pages 1-7.
    2. Nafisah, Ibrahim & Shrahili, Mansour & Alotaibi, Naif & Scarf, Phil, 2019. "Virtual series-system models of imperfect repair," Reliability Engineering and System Safety, Elsevier, vol. 188(C), pages 604-613.
    3. Zhao, Xiujie & He, Shuguang & Xie, Min, 2018. "Utilizing experimental degradation data for warranty cost optimization under imperfect repair," Reliability Engineering and System Safety, Elsevier, vol. 177(C), pages 108-119.
    4. Xiangang Cao & Pengfei Li & Song Ming, 2021. "Remaining Useful Life Prediction-Based Maintenance Decision Model for Stochastic Deterioration Equipment under Data-Driven," Sustainability, MDPI, vol. 13(15), pages 1-19, July.
    5. Mosayebi Omshi, E. & Grall, A., 2021. "Replacement and imperfect repair of deteriorating system: Study of a CBM policy and impact of repair efficiency," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    6. Shen, Jingyuan & Cui, Lirong & Ma, Yizhong, 2019. "Availability and optimal maintenance policy for systems degrading in dynamic environments," European Journal of Operational Research, Elsevier, vol. 276(1), pages 133-143.
    7. Zhang, Jian-Xun & Si, Xiao-Sheng & Du, Dang-Bo & Hu, Chang-Hua & Hu, Chen, 2020. "A novel iterative approach of lifetime estimation for standby systems with deteriorating spare parts," Reliability Engineering and System Safety, Elsevier, vol. 201(C).
    8. Giorgio, Massimiliano & Pulcini, Gianpaolo, 2018. "A new state-dependent degradation process and related model misidentification problems," European Journal of Operational Research, Elsevier, vol. 267(3), pages 1027-1038.
    9. Xiaofeng Wang & Shu Guo & Jian Shen & Yang Liu, 2020. "Optimization of preventive maintenance for series manufacturing system by differential evolution algorithm," Journal of Intelligent Manufacturing, Springer, vol. 31(3), pages 745-757, March.
    10. Belkacem, Lobna & Simeu-Abazi, Zineb & Dhouibi, Hedi & Gascard, Eric & Messaoud, Hassani, 2017. "Diagnostic and prognostic of hybrid dynamic systems: Modeling and RUL evaluation for two maintenance policies," Reliability Engineering and System Safety, Elsevier, vol. 164(C), pages 98-109.
    11. Alaswad, Suzan & Xiang, Yisha, 2017. "A review on condition-based maintenance optimization models for stochastically deteriorating system," Reliability Engineering and System Safety, Elsevier, vol. 157(C), pages 54-63.
    12. Dai, Anshu & Wang, Xin & Li, Yu & Li, Ting & He, Shuguang, 2023. "Design of a performance-based warranty policy with replacement–repair strategy and cumulative cost threshold," International Journal of Production Economics, Elsevier, vol. 255(C).
    13. Zhao, Xiujie & Chen, Piao & Gaudoin, Olivier & Doyen, Laurent, 2021. "Accelerated degradation tests with inspection effects," European Journal of Operational Research, Elsevier, vol. 292(3), pages 1099-1114.
    14. Liu, Bin & Wu, Shaomin & Xie, Min & Kuo, Way, 2017. "A condition-based maintenance policy for degrading systems with age- and state-dependent operating cost," European Journal of Operational Research, Elsevier, vol. 263(3), pages 879-887.
    15. Huynh, K.T., 2021. "An adaptive predictive maintenance model for repairable deteriorating systems using inverse Gaussian degradation process," Reliability Engineering and System Safety, Elsevier, vol. 213(C).
    16. Wenke Gao, 2020. "An extended geometric process and its application in replacement policy," Journal of Risk and Reliability, , vol. 234(1), pages 88-103, February.
    17. Zhang, Nan & Fouladirad, Mitra & Barros, Anne, 2019. "Reliability-based measures and prognostic analysis of a K-out-of-N system in a random environment," European Journal of Operational Research, Elsevier, vol. 272(3), pages 1120-1131.
    18. Badía, F.G. & Berrade, M.D. & Cha, Ji Hwan & Lee, Hyunju, 2018. "Optimal replacement policy under a general failure and repair model: Minimal versus worse than old repair," Reliability Engineering and System Safety, Elsevier, vol. 180(C), pages 362-372.
    19. Marwa Belhaj Salem & Mitra Fouladirad & Estelle Deloux, 2021. "Prognostic and Classification of Dynamic Degradation in a Mechanical System Using Variance Gamma Process," Mathematics, MDPI, vol. 9(3), pages 1-25, January.
    20. Antonio Pievatolo & Fabrizio Ruggeri & Refik Soyer & Simon Wilson, 2021. "Decisions in Risk and Reliability: An Explanatory Perspective," Stats, MDPI, vol. 4(2), pages 1-23, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:257:y:2017:i:3:p:763-772. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.