IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v243y2015i3p763-773.html
   My bibliography  Save this article

Inverse chromatic number problems in interval and permutation graphs

Author

Listed:
  • Chung, Yerim
  • Culus, Jean-François
  • Demange, Marc

Abstract

Given a graph G and a positive integer K, the inverse chromatic number problem consists in modifying the graph as little as possible so that it admits a chromatic number not greater than K. In this paper, we focus on the inverse chromatic number problem for certain classes of graphs. First, we discuss diverse possible versions and then focus on two application frameworks which motivate this problem in interval and permutation graphs: the inverse booking problem and the inverse track assignment problem. The inverse booking problem is closely related to some previously known scheduling problems; we propose new hardness results and polynomial cases. The inverse track assignment problem motivates our study of the inverse chromatic number problem in permutation graphs; we show how to solve in polynomial time a generalization of the problem with a bounded number of colors.

Suggested Citation

  • Chung, Yerim & Culus, Jean-François & Demange, Marc, 2015. "Inverse chromatic number problems in interval and permutation graphs," European Journal of Operational Research, Elsevier, vol. 243(3), pages 763-773.
  • Handle: RePEc:eee:ejores:v:243:y:2015:i:3:p:763-773
    DOI: 10.1016/j.ejor.2014.12.028
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221714010467
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2014.12.028?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. de Werra, D., 1996. "Extensions of coloring models for scheduling purposes," European Journal of Operational Research, Elsevier, vol. 92(3), pages 474-492, August.
    2. Demange, Marc & Ekim, Tınaz & Ries, Bernard & Tanasescu, Cerasela, 2015. "On some applications of the selective graph coloring problem," European Journal of Operational Research, Elsevier, vol. 240(2), pages 307-314.
    3. Jianzhong Zhang & Mao Cai, 1998. "Inverse problem of minimum cuts," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 47(1), pages 51-58, February.
    4. Demange, Marc & Ekim, TInaz & de Werra, Dominique, 2009. "A tutorial on the use of graph coloring for some problems in robotics," European Journal of Operational Research, Elsevier, vol. 192(1), pages 41-55, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tınaz Ekim & Mordechai Shalom & Oylum Şeker, 2021. "The complexity of subtree intersection representation of chordal graphs and linear time chordal graph generation," Journal of Combinatorial Optimization, Springer, vol. 41(3), pages 710-735, April.
    2. Yim, Seho & Hong, Sung-Pil & Park, Myoung-Ju & Chung, Yerim, 2022. "Inverse interval scheduling via reduction on a single machine," European Journal of Operational Research, Elsevier, vol. 303(2), pages 541-549.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Natalia Castro & María A. Garrido-Vizuete & Rafael Robles & María Trinidad Villar-Liñán, 2020. "Contrast in greyscales of graphs," Journal of Combinatorial Optimization, Springer, vol. 39(3), pages 874-898, April.
    2. Pop, Petrică C., 2020. "The generalized minimum spanning tree problem: An overview of formulations, solution procedures and latest advances," European Journal of Operational Research, Elsevier, vol. 283(1), pages 1-15.
    3. Ahuja, Ravindra K., 1956- & Orlin, James B., 1953-, 1998. "Inverse optimization," Working papers WP 4003-98., Massachusetts Institute of Technology (MIT), Sloan School of Management.
    4. Asratian, A. S. & de Werra, D., 2002. "A generalized class-teacher model for some timetabling problems," European Journal of Operational Research, Elsevier, vol. 143(3), pages 531-542, December.
    5. Zhang, Jianzhong & Liu, Zhenhong & Ma, Zhongfan, 2000. "Some reverse location problems," European Journal of Operational Research, Elsevier, vol. 124(1), pages 77-88, July.
    6. Yanez, Javier & Ramirez, Javier, 2003. "The robust coloring problem," European Journal of Operational Research, Elsevier, vol. 148(3), pages 546-558, August.
    7. Francesco Carrabs & Raffaele Cerulli & Ciriaco D’Ambrosio & Federica Laureana, 2021. "The Generalized Minimum Branch Vertices Problem: Properties and Polyhedral Analysis," Journal of Optimization Theory and Applications, Springer, vol. 188(2), pages 356-377, February.
    8. Timothy C. Y. Chan & Maria Eberg & Katharina Forster & Claire Holloway & Luciano Ieraci & Yusuf Shalaby & Nasrin Yousefi, 2022. "An Inverse Optimization Approach to Measuring Clinical Pathway Concordance," Management Science, INFORMS, vol. 68(3), pages 1882-1903, March.
    9. Ram Gopalan, 2015. "Computational complexity of convoy movement planning problems," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 82(1), pages 31-60, August.
    10. Al-Yakoob, Salem M. & Sherali, Hanif D., 2006. "Mathematical programming models and algorithms for a class-faculty assignment problem," European Journal of Operational Research, Elsevier, vol. 173(2), pages 488-507, September.
    11. Tınaz Ekim & Mordechai Shalom & Oylum Şeker, 2021. "The complexity of subtree intersection representation of chordal graphs and linear time chordal graph generation," Journal of Combinatorial Optimization, Springer, vol. 41(3), pages 710-735, April.
    12. Bozorgi, Ali, 2016. "Multi-product inventory model for cold items with cost and emission consideration," International Journal of Production Economics, Elsevier, vol. 176(C), pages 123-142.
    13. Zhang, Jianzhong & Xu, Chengxian, 2010. "Inverse optimization for linearly constrained convex separable programming problems," European Journal of Operational Research, Elsevier, vol. 200(3), pages 671-679, February.
    14. Raja Marappan & Gopalakrishnan Sethumadhavan, 2020. "Complexity Analysis and Stochastic Convergence of Some Well-known Evolutionary Operators for Solving Graph Coloring Problem," Mathematics, MDPI, vol. 8(3), pages 1-20, February.
    15. Clemens Heuberger, 2004. "Inverse Combinatorial Optimization: A Survey on Problems, Methods, and Results," Journal of Combinatorial Optimization, Springer, vol. 8(3), pages 329-361, September.
    16. Boysen, Nils & Emde, Simon, 2016. "The parallel stack loading problem to minimize blockages," European Journal of Operational Research, Elsevier, vol. 249(2), pages 618-627.
    17. M. Cai & X. Yang & Y. Li, 2000. "Inverse Problems of Submodular Functions on Digraphs," Journal of Optimization Theory and Applications, Springer, vol. 104(3), pages 559-575, March.
    18. Zhenhong Liu & Jianzhong Zhang, 2003. "On Inverse Problems of Optimum Perfect Matching," Journal of Combinatorial Optimization, Springer, vol. 7(3), pages 215-228, September.
    19. Ferrarini, Luca & Gualandi, Stefano, 2022. "Total Coloring and Total Matching: Polyhedra and Facets," European Journal of Operational Research, Elsevier, vol. 303(1), pages 129-142.
    20. Adrian Deaconu & Laura Ciupala, 2020. "Inverse Minimum Cut Problem with Lower and Upper Bounds," Mathematics, MDPI, vol. 8(9), pages 1-10, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:243:y:2015:i:3:p:763-773. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.