IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v200y2010i3p671-679.html
   My bibliography  Save this article

Inverse optimization for linearly constrained convex separable programming problems

Author

Listed:
  • Zhang, Jianzhong
  • Xu, Chengxian

Abstract

In this paper, we study inverse optimization for linearly constrained convex separable programming problems that have wide applications in industrial and managerial areas. For a given feasible point of a convex separable program, the inverse optimization is to determine whether the feasible point can be made optimal by adjusting the parameter values in the problem, and when the answer is positive, find the parameter values that have the smallest adjustments. A sufficient and necessary condition is given for a feasible point to be able to become optimal by adjusting parameter values. Inverse optimization formulations are presented with l1 and l2 norms. These inverse optimization problems are either linear programming when l1 norm is used in the formulation, or convex quadratic separable programming when l2 norm is used.

Suggested Citation

  • Zhang, Jianzhong & Xu, Chengxian, 2010. "Inverse optimization for linearly constrained convex separable programming problems," European Journal of Operational Research, Elsevier, vol. 200(3), pages 671-679, February.
  • Handle: RePEc:eee:ejores:v:200:y:2010:i:3:p:671-679
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377-2217(09)00050-2
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ron Dembo & Dan Rosen, 1999. "The practice of portfolio replication. A practical overview of forward and inverse problems," Annals of Operations Research, Springer, vol. 85(0), pages 267-284, January.
    2. Paul H. Zipkin, 1980. "Simple Ranking Methods for Allocation of One Resource," Management Science, INFORMS, vol. 26(1), pages 34-43, January.
    3. Muralidharan S. Kodialam & Hanan Luss, 1998. "Algorithms for Separable Nonlinear Resource Allocation Problems," Operations Research, INFORMS, vol. 46(2), pages 272-284, April.
    4. Bretthauer, Kurt M. & Shetty, Bala, 2002. "The nonlinear knapsack problem - algorithms and applications," European Journal of Operational Research, Elsevier, vol. 138(3), pages 459-472, May.
    5. Renato D. C. Monteiro & Ilan Adler, 1990. "An Extension of Karmarkar Type Algorithm to a Class of Convex Separable Programming Problems with Global Linear Rate of Convergence," Mathematics of Operations Research, INFORMS, vol. 15(3), pages 408-422, August.
    6. Jianzhong Zhang & Mao Cai, 1998. "Inverse problem of minimum cuts," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 47(1), pages 51-58, February.
    7. Li, Han-Lin & Yu, Chian-Son, 1999. "A global optimization method for nonconvex separable programming problems," European Journal of Operational Research, Elsevier, vol. 117(2), pages 275-292, September.
    8. Scott Carr & William Lovejoy, 2000. "The Inverse Newsvendor Problem: Choosing an Optimal Demand Portfolio for Capacitated Resources," Management Science, INFORMS, vol. 46(7), pages 912-927, July.
    9. P. T. Sokkalingam & Ravindra K. Ahuja & James B. Orlin, 1999. "Solving Inverse Spanning Tree Problems Through Network Flow Techniques," Operations Research, INFORMS, vol. 47(2), pages 291-298, April.
    10. Evan L. Porteus, 1986. "Optimal Lot Sizing, Process Quality Improvement and Setup Cost Reduction," Operations Research, INFORMS, vol. 34(1), pages 137-144, February.
    11. Gabriel R. Bitran & Arnoldo C. Hax, 1981. "Disaggregation and Resource Allocation Using Convex Knapsack Problems with Bounded Variables," Management Science, INFORMS, vol. 27(4), pages 431-441, April.
    12. Bruce A. McCarl & Hayri Önal, 1989. "Linear Approximation Using MOTAD and Separable Programming: Should It Be Done?," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 71(1), pages 158-166.
    13. Clemens Heuberger, 2004. "Inverse Combinatorial Optimization: A Survey on Problems, Methods, and Results," Journal of Combinatorial Optimization, Springer, vol. 8(3), pages 329-361, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Timothy C. Y. Chan & Tim Craig & Taewoo Lee & Michael B. Sharpe, 2014. "Generalized Inverse Multiobjective Optimization with Application to Cancer Therapy," Operations Research, INFORMS, vol. 62(3), pages 680-695, June.
    2. Chan, Timothy C.Y. & Lee, Taewoo, 2018. "Trade-off preservation in inverse multi-objective convex optimization," European Journal of Operational Research, Elsevier, vol. 270(1), pages 25-39.
    3. Merve Bodur & Timothy C. Y. Chan & Ian Yihang Zhu, 2022. "Inverse Mixed Integer Optimization: Polyhedral Insights and Trust Region Methods," INFORMS Journal on Computing, INFORMS, vol. 34(3), pages 1471-1488, May.
    4. Rishabh Gupta & Qi Zhang, 2022. "Decomposition and Adaptive Sampling for Data-Driven Inverse Linear Optimization," INFORMS Journal on Computing, INFORMS, vol. 34(5), pages 2720-2735, September.
    5. Vusal Babashov & Antoine Sauré & Onur Ozturk & Jonathan Patrick, 2023. "Setting wait time targets in a multi‐priority patient setting," Production and Operations Management, Production and Operations Management Society, vol. 32(6), pages 1958-1974, June.
    6. Crönert, Tobias & Martin, Layla & Minner, Stefan & Tang, Christopher S., 2024. "Inverse optimization of integer programming games for parameter estimation arising from competitive retail location selection," European Journal of Operational Research, Elsevier, vol. 312(3), pages 938-953.
    7. Strang, Kenneth David, 2012. "Importance of verifying queue model assumptions before planning with simulation software," European Journal of Operational Research, Elsevier, vol. 218(2), pages 493-504.
    8. Jonathan Yu-Meng Li, 2021. "Inverse Optimization of Convex Risk Functions," Management Science, INFORMS, vol. 67(11), pages 7113-7141, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Patriksson, Michael, 2008. "A survey on the continuous nonlinear resource allocation problem," European Journal of Operational Research, Elsevier, vol. 185(1), pages 1-46, February.
    2. Kameshwaran, S. & Narahari, Y., 2009. "Nonconvex piecewise linear knapsack problems," European Journal of Operational Research, Elsevier, vol. 192(1), pages 56-68, January.
    3. Zhang, Bin & Hua, Zhongsheng, 2008. "A unified method for a class of convex separable nonlinear knapsack problems," European Journal of Operational Research, Elsevier, vol. 191(1), pages 1-6, November.
    4. AgralI, Semra & Geunes, Joseph, 2009. "Solving knapsack problems with S-curve return functions," European Journal of Operational Research, Elsevier, vol. 193(2), pages 605-615, March.
    5. DePaolo, Concetta A. & Rader, David Jr., 2007. "A heuristic algorithm for a chance constrained stochastic program," European Journal of Operational Research, Elsevier, vol. 176(1), pages 27-45, January.
    6. De Waegenaere, A.M.B. & Wielhouwer, J.L., 2001. "A Partial Ranking Algorithm for Resource Allocation Problems," Other publications TiSEM 8b2e0185-36f9-43df-8a3d-d, Tilburg University, School of Economics and Management.
    7. De Waegenaere, A.M.B. & Wielhouwer, J.L., 2001. "A Partial Ranking Algorithm for Resource Allocation Problems," Discussion Paper 2001-40, Tilburg University, Center for Economic Research.
    8. Hanan Luss, 1999. "On Equitable Resource Allocation Problems: A Lexicographic Minimax Approach," Operations Research, INFORMS, vol. 47(3), pages 361-378, June.
    9. Mohammadivojdan, Roshanak & Geunes, Joseph, 2018. "The newsvendor problem with capacitated suppliers and quantity discounts," European Journal of Operational Research, Elsevier, vol. 271(1), pages 109-119.
    10. Patriksson, Michael & Strömberg, Christoffer, 2015. "Algorithms for the continuous nonlinear resource allocation problem—New implementations and numerical studies," European Journal of Operational Research, Elsevier, vol. 243(3), pages 703-722.
    11. Bretthauer, Kurt M. & Shetty, Bala, 2002. "The nonlinear knapsack problem - algorithms and applications," European Journal of Operational Research, Elsevier, vol. 138(3), pages 459-472, May.
    12. Timothy C. Y. Chan & Tim Craig & Taewoo Lee & Michael B. Sharpe, 2014. "Generalized Inverse Multiobjective Optimization with Application to Cancer Therapy," Operations Research, INFORMS, vol. 62(3), pages 680-695, June.
    13. Zeynep Erkin & Matthew D. Bailey & Lisa M. Maillart & Andrew J. Schaefer & Mark S. Roberts, 2010. "Eliciting Patients' Revealed Preferences: An Inverse Markov Decision Process Approach," Decision Analysis, INFORMS, vol. 7(4), pages 358-365, December.
    14. Chen, Lu & Chen, Yuyi & Langevin, André, 2021. "An inverse optimization approach for a capacitated vehicle routing problem," European Journal of Operational Research, Elsevier, vol. 295(3), pages 1087-1098.
    15. Aboolian, Robert & Berman, Oded & Krass, Dmitry, 2021. "Optimizing facility location and design," European Journal of Operational Research, Elsevier, vol. 289(1), pages 31-43.
    16. Hughes, Michael S. & Lunday, Brian J., 2022. "The Weapon Target Assignment Problem: Rational Inference of Adversary Target Utility Valuations from Observed Solutions," Omega, Elsevier, vol. 107(C).
    17. Hoto, R.S.V. & Matioli, L.C. & Santos, P.S.M., 2020. "A penalty algorithm for solving convex separable knapsack problems," Applied Mathematics and Computation, Elsevier, vol. 387(C).
    18. Chernonog, Tatyana & Goldberg, Noam, 2018. "On the multi-product newsvendor with bounded demand distributions," International Journal of Production Economics, Elsevier, vol. 203(C), pages 38-47.
    19. Cai, Mao-Cheng & Duin, C.W. & Yang, Xiaoguang & Zhang, Jianzhong, 2008. "The partial inverse minimum spanning tree problem when weight increase is forbidden," European Journal of Operational Research, Elsevier, vol. 188(2), pages 348-353, July.
    20. Clemens Heuberger, 2004. "Inverse Combinatorial Optimization: A Survey on Problems, Methods, and Results," Journal of Combinatorial Optimization, Springer, vol. 8(3), pages 329-361, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:200:y:2010:i:3:p:671-679. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.