IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v237y2014i2p404-410.html
   My bibliography  Save this article

When is rounding allowed in integer nonlinear optimization?

Author

Listed:
  • Hübner, Ruth
  • Schöbel, Anita

Abstract

In this paper we consider nonlinear integer optimization problems. Nonlinear integer programming has mainly been studied for special classes, such as convex and concave objective functions and polyhedral constraints. In this paper we follow an other approach which is not based on convexity or concavity. Studying geometric properties of the level sets and the feasible region, we identify cases in which an integer minimizer of a nonlinear program can be found by rounding (up or down) the coordinates of a solution to its continuous relaxation. We call this property rounding property. If it is satisfied, it enables us (for fixed dimension) to solve an integer programming problem in the same time complexity as its continuous relaxation. We also investigate the strong rounding property which allows rounding a solution to the continuous relaxation to the next integer solution and in turn yields that the integer version can be solved in the same time complexity as its continuous relaxation for arbitrary dimensions.

Suggested Citation

  • Hübner, Ruth & Schöbel, Anita, 2014. "When is rounding allowed in integer nonlinear optimization?," European Journal of Operational Research, Elsevier, vol. 237(2), pages 404-410.
  • Handle: RePEc:eee:ejores:v:237:y:2014:i:2:p:404-410
    DOI: 10.1016/j.ejor.2014.01.059
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221714000988
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2014.01.059?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Omprakash K. Gupta & A. Ravindran, 1985. "Branch and Bound Experiments in Convex Nonlinear Integer Programming," Management Science, INFORMS, vol. 31(12), pages 1533-1546, December.
    2. Jesús A. De Loera & Raymond Hemmecke & Matthias Köppe & Robert Weismantel, 2006. "Integer Polynomial Optimization in Fixed Dimension," Mathematics of Operations Research, INFORMS, vol. 31(1), pages 147-153, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sönke Behrends & Ruth Hübner & Anita Schöbel, 2018. "Norm bounds and underestimators for unconstrained polynomial integer minimization," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 87(1), pages 73-107, February.
    2. Alberto Del Pia & Robert Hildebrand & Robert Weismantel & Kevin Zemmer, 2016. "Minimizing Cubic and Homogeneous Polynomials over Integers in the Plane," Mathematics of Operations Research, INFORMS, vol. 41(2), pages 511-530, May.
    3. Marcia Fampa & Jon Lee & Wendel Melo, 2016. "A specialized branch-and-bound algorithm for the Euclidean Steiner tree problem in n-space," Computational Optimization and Applications, Springer, vol. 65(1), pages 47-71, September.
    4. Tommy Andersson & Christer Andersson, 2009. "Solving House Allocation Problems with Risk-Averse Agents," Computational Economics, Springer;Society for Computational Economics, vol. 33(4), pages 389-401, May.
    5. Jesús A. De Loera & Raymond Hemmecke & Matthias Köppe, 2009. "Pareto Optima of Multicriteria Integer Linear Programs," INFORMS Journal on Computing, INFORMS, vol. 21(1), pages 39-48, February.
    6. Terzi, Mourad & Ouazene, Yassine & Yalaoui, Alice & Yalaoui, Farouk, 2023. "Lot-sizing and pricing decisions under attraction demand models and multi-channel environment: New efficient formulations," Operations Research Perspectives, Elsevier, vol. 10(C).
    7. Xiaoguang Chen & Hayri Önal, 2014. "An Economic Analysis of the Future U.S. Biofuel Industry, Facility Location, and Supply Chain Network," Transportation Science, INFORMS, vol. 48(4), pages 575-591, November.
    8. David E. Bernal & Zedong Peng & Jan Kronqvist & Ignacio E. Grossmann, 2022. "Alternative regularizations for Outer-Approximation algorithms for convex MINLP," Journal of Global Optimization, Springer, vol. 84(4), pages 807-842, December.
    9. Andreas Lundell & Jan Kronqvist & Tapio Westerlund, 2022. "The supporting hyperplane optimization toolkit for convex MINLP," Journal of Global Optimization, Springer, vol. 84(1), pages 1-41, September.
    10. Zhang, Zijun & Zeng, Yaohui & Kusiak, Andrew, 2012. "Minimizing pump energy in a wastewater processing plant," Energy, Elsevier, vol. 47(1), pages 505-514.
    11. Wendel Melo & Marcia Fampa & Fernanda Raupp, 2014. "Integrating nonlinear branch-and-bound and outer approximation for convex Mixed Integer Nonlinear Programming," Journal of Global Optimization, Springer, vol. 60(2), pages 373-389, October.
    12. Zheng, Zhuang & Pan, Jia & Huang, Gongsheng & Luo, Xiaowei, 2022. "A bottom-up intra-hour proactive scheduling of thermal appliances for household peak avoiding based on model predictive control," Applied Energy, Elsevier, vol. 323(C).
    13. Andrew Allman & Qi Zhang, 2021. "Branch-and-price for a class of nonconvex mixed-integer nonlinear programs," Journal of Global Optimization, Springer, vol. 81(4), pages 861-880, December.
    14. Kuthambalayan, Thyagaraj S. & Mehta, Peeyush & Shanker, Kripa, 2014. "Integrating operations and marketing decisions using delayed differentiation of products and guaranteed delivery time under stochastic demand," European Journal of Operational Research, Elsevier, vol. 237(2), pages 617-627.
    15. Meenarli Sharma & Prashant Palkar & Ashutosh Mahajan, 2022. "Linearization and parallelization schemes for convex mixed-integer nonlinear optimization," Computational Optimization and Applications, Springer, vol. 81(2), pages 423-478, March.
    16. Sangwon Moon, 1989. "Application of generalized benders decomposition to a nonlinear distribution system design problem," Naval Research Logistics (NRL), John Wiley & Sons, vol. 36(3), pages 283-295, June.
    17. Kumar Abhishek & Sven Leyffer & Jeff Linderoth, 2010. "FilMINT: An Outer Approximation-Based Solver for Convex Mixed-Integer Nonlinear Programs," INFORMS Journal on Computing, INFORMS, vol. 22(4), pages 555-567, November.
    18. Shyamal Gondkar & Sivakumar Sreeramagiri & Edwin Zondervan, 2012. "Methodology for Assessment and Optimization of Industrial Eco-Systems," Challenges, MDPI, vol. 3(1), pages 1-21, June.
    19. Francisco Trespalacios & Ignacio E. Grossmann, 2016. "Cutting Plane Algorithm for Convex Generalized Disjunctive Programs," INFORMS Journal on Computing, INFORMS, vol. 28(2), pages 209-222, May.
    20. Luca Mencarelli & Youcef Sahraoui & Leo Liberti, 2017. "A multiplicative weights update algorithm for MINLP," EURO Journal on Computational Optimization, Springer;EURO - The Association of European Operational Research Societies, vol. 5(1), pages 31-86, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:237:y:2014:i:2:p:404-410. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.