Advanced Search
MyIDEAS: Login to save this article or follow this journal

A comparison of heuristic best-first algorithms for bicriterion shortest path problems

Contents:

Author Info

  • Machuca, E.
  • Mandow, L.
  • Pérez de la Cruz, J.L.
  • Ruiz-Sepulveda, A.
Registered author(s):

    Abstract

    A variety of algorithms have been proposed to solve the bicriterion shortest path problem. This article analyzes and compares the performance of three best-first (label-setting) algorithms that accept heuristic information to improve efficiency. These are NAMOA∗, MOA∗, and Tung & Chew’s algorithm (TC). A set of experiments explores the impact of heuristic information in search efficiency, and the relative performance of the algorithms. The analysis reveals that NAMOA∗ is the best option for difficult problems. Its time performance can benefit considerably from heuristic information, though not in all cases. The performance of TC is similar but somewhat worse. However, the time performance of MOA∗ is found to degrade considerably with the use of heuristic information in most cases. Explanations are provided for these phenomena.

    Download Info

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
    File URL: http://www.sciencedirect.com/science/article/pii/S0377221711008010
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

    Bibliographic Info

    Article provided by Elsevier in its journal European Journal of Operational Research.

    Volume (Year): 217 (2012)
    Issue (Month): 1 ()
    Pages: 44-53

    as in new window
    Handle: RePEc:eee:ejores:v:217:y:2012:i:1:p:44-53

    Contact details of provider:
    Web page: http://www.elsevier.com/locate/eor

    Related research

    Keywords: Search theory; Combinatorial optimization; Multiobjective shortest path problem; Best-first search; Heuristic search; Artificial intelligence;

    References

    References listed on IDEAS
    Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:
    as in new window
    1. Tung Tung, Chi & Lin Chew, Kim, 1992. "A multicriteria Pareto-optimal path algorithm," European Journal of Operational Research, Elsevier, vol. 62(2), pages 203-209, October.
    2. Iori, Manuel & Martello, Silvano & Pretolani, Daniele, 2010. "An aggregate label setting policy for the multi-objective shortest path problem," European Journal of Operational Research, Elsevier, vol. 207(3), pages 1489-1496, December.
    3. Mote, John & Murthy, Ishwar & Olson, David L., 1991. "A parametric approach to solving bicriterion shortest path problems," European Journal of Operational Research, Elsevier, vol. 53(1), pages 81-92, July.
    4. Ziliaskopoulos, Athanasios K. & Mandanas, Fotios D. & Mahmassani, Hani S., 2009. "An extension of labeling techniques for finding shortest path trees," European Journal of Operational Research, Elsevier, vol. 198(1), pages 63-72, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Lists

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    Statistics

    Access and download statistics

    Corrections

    When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:217:y:2012:i:1:p:44-53. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Zhang, Lei).

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.