IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v192y2009i1p29-40.html
   My bibliography  Save this article

Heuristic approaches to large-scale periodic packing of irregular shapes on a rectangular sheet

Author

Listed:
  • Costa, M. Teresa
  • Gomes, A. Miguel
  • Oliveira, José F.

Abstract

The nesting problem is a two-dimensional cutting and packing problem where the small pieces to cut have irregular shapes. A particular case of the nesting problem occurs when congruent copies of one single shape have to fill, as much as possible, a limited sheet. Traditional approaches to the nesting problem have difficulty to tackle with high number of pieces to place. Additionally, if the orientation of the given shape is not a constraint, the general nesting approaches are not particularly successful. This problem arises in practice in several industrial contexts such as footwear, metalware and furniture. A possible approach is the periodic placement of the shapes, in a lattice way. In this paper, we propose three heuristic approaches to solve this particular case of nesting problems. Experimental results are compared with published results in literature and additional results obtained from new instances are also provided.

Suggested Citation

  • Costa, M. Teresa & Gomes, A. Miguel & Oliveira, José F., 2009. "Heuristic approaches to large-scale periodic packing of irregular shapes on a rectangular sheet," European Journal of Operational Research, Elsevier, vol. 192(1), pages 29-40, January.
  • Handle: RePEc:eee:ejores:v:192:y:2009:i:1:p:29-40
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377-2217(07)00932-0
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wascher, Gerhard & Hau[ss]ner, Heike & Schumann, Holger, 2007. "An improved typology of cutting and packing problems," European Journal of Operational Research, Elsevier, vol. 183(3), pages 1109-1130, December.
    2. Dowsland, Kathryn A. & Dowsland, William B., 1992. "Packing problems," European Journal of Operational Research, Elsevier, vol. 56(1), pages 2-14, January.
    3. Stoyan, Yu. G. & Pankratov, A. V., 1999. "Regular packing of congruent polygons on the rectangular sheet," European Journal of Operational Research, Elsevier, vol. 113(3), pages 653-675, March.
    4. Stoyan, Yu G. & Patsuk, V. N., 2000. "A method of optimal lattice packing of congruent oriented polygons in the plane," European Journal of Operational Research, Elsevier, vol. 124(1), pages 204-216, July.
    5. Gomes, A. Miguel & Oliveira, Jose F., 2002. "A 2-exchange heuristic for nesting problems," European Journal of Operational Research, Elsevier, vol. 141(2), pages 359-370, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liu, Jingfa & Jiang, Yucong & Li, Gang & Xue, Yu & Liu, Zhaoxia & Zhang, Zhen, 2015. "Heuristic-based energy landscape paving for the circular packing problem with performance constraints of equilibrium," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 431(C), pages 166-174.
    2. Qiang Luo & Yunqing Rao, 2022. "Improved Sliding Algorithm for Generating No-Fit Polygon in the 2D Irregular Packing Problem," Mathematics, MDPI, vol. 10(16), pages 1-18, August.
    3. Donald Jones, 2014. "A fully general, exact algorithm for nesting irregular shapes," Journal of Global Optimization, Springer, vol. 59(2), pages 367-404, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Igor Kierkosz & Maciej Luczak, 2014. "A hybrid evolutionary algorithm for the two-dimensional packing problem," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 22(4), pages 729-753, December.
    2. E G Birgin & R D Lobato & R Morabito, 2010. "An effective recursive partitioning approach for the packing of identical rectangles in a rectangle," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 61(2), pages 306-320, February.
    3. J A Bennell & J F Oliveira, 2009. "A tutorial in irregular shape packing problems," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 60(1), pages 93-105, May.
    4. Burke, E.K. & Hellier, R.S.R. & Kendall, G. & Whitwell, G., 2007. "Complete and robust no-fit polygon generation for the irregular stock cutting problem," European Journal of Operational Research, Elsevier, vol. 179(1), pages 27-49, May.
    5. Yu, M.T. & Lin, T.Y. & Hung, C., 2009. "Active-set sequential quadratic programming method with compact neighbourhood algorithm for the multi-polygon mass production cutting-stock problem with rotatable polygons," International Journal of Production Economics, Elsevier, vol. 121(1), pages 148-161, September.
    6. Irawan, Chandra Ade & Song, Xiang & Jones, Dylan & Akbari, Negar, 2017. "Layout optimisation for an installation port of an offshore wind farm," European Journal of Operational Research, Elsevier, vol. 259(1), pages 67-83.
    7. Leung, Stephen C.H. & Zhang, Defu & Sim, Kwang Mong, 2011. "A two-stage intelligent search algorithm for the two-dimensional strip packing problem," European Journal of Operational Research, Elsevier, vol. 215(1), pages 57-69, November.
    8. Chehrazad, Sahar & Roose, Dirk & Wauters, Tony, 2022. "A fast and scalable bottom-left-fill algorithm to solve nesting problems using a semi-discrete representation," European Journal of Operational Research, Elsevier, vol. 300(3), pages 809-826.
    9. Khanafer, Ali & Clautiaux, François & Talbi, El-Ghazali, 2010. "New lower bounds for bin packing problems with conflicts," European Journal of Operational Research, Elsevier, vol. 206(2), pages 281-288, October.
    10. Igor Kierkosz & Maciej Łuczak, 2019. "A one-pass heuristic for nesting problems," Operations Research and Decisions, Wroclaw University of Science and Technology, Faculty of Management, vol. 29(1), pages 37-60.
    11. Cherri, Adriana Cristina & Arenales, Marcos Nereu & Yanasse, Horacio Hideki & Poldi, Kelly Cristina & Gonçalves Vianna, Andréa Carla, 2014. "The one-dimensional cutting stock problem with usable leftovers – A survey," European Journal of Operational Research, Elsevier, vol. 236(2), pages 395-402.
    12. Eunice López-Camacho & Gabriela Ochoa & Hugo Terashima-Marín & Edmund Burke, 2013. "An effective heuristic for the two-dimensional irregular bin packing problem," Annals of Operations Research, Springer, vol. 206(1), pages 241-264, July.
    13. Nikolaus Furian & Siegfried Vössner, 2014. "A hybrid algorithm for constrained order packing," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 22(1), pages 157-186, March.
    14. Umetani, Shunji & Murakami, Shohei, 2022. "Coordinate descent heuristics for the irregular strip packing problem of rasterized shapes," European Journal of Operational Research, Elsevier, vol. 303(3), pages 1009-1026.
    15. Elkeran, Ahmed, 2013. "A new approach for sheet nesting problem using guided cuckoo search and pairwise clustering," European Journal of Operational Research, Elsevier, vol. 231(3), pages 757-769.
    16. Bennell, Julia A. & Soon Lee, Lai & Potts, Chris N., 2013. "A genetic algorithm for two-dimensional bin packing with due dates," International Journal of Production Economics, Elsevier, vol. 145(2), pages 547-560.
    17. J. Bennell & G. Scheithauer & Y. Stoyan & T. Romanova, 2010. "Tools of mathematical modeling of arbitrary object packing problems," Annals of Operations Research, Springer, vol. 179(1), pages 343-368, September.
    18. Miguel Santoro & Felipe Lemos, 2015. "Irregular packing: MILP model based on a polygonal enclosure," Annals of Operations Research, Springer, vol. 235(1), pages 693-707, December.
    19. Toledo, Franklina M.B. & Carravilla, Maria Antónia & Ribeiro, Cristina & Oliveira, José F. & Gomes, A. Miguel, 2013. "The Dotted-Board Model: A new MIP model for nesting irregular shapes," International Journal of Production Economics, Elsevier, vol. 145(2), pages 478-487.
    20. Jean-François Côté & Manuel Iori, 2018. "The Meet-in-the-Middle Principle for Cutting and Packing Problems," INFORMS Journal on Computing, INFORMS, vol. 30(4), pages 646-661, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:192:y:2009:i:1:p:29-40. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.