IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v177y2007i2p851-864.html
   My bibliography  Save this article

On combinatorial optimization problems on matroids with uncertain weights

Author

Listed:
  • Kasperski, Adam
  • Zielinski, Pawel

Abstract

No abstract is available for this item.

Suggested Citation

  • Kasperski, Adam & Zielinski, Pawel, 2007. "On combinatorial optimization problems on matroids with uncertain weights," European Journal of Operational Research, Elsevier, vol. 177(2), pages 851-864, March.
  • Handle: RePEc:eee:ejores:v:177:y:2007:i:2:p:851-864
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377-2217(06)00025-7
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chanas, Stefan & Zielinski, Pawel, 2002. "The computational complexity of the criticality problems in a network with interval activity times," European Journal of Operational Research, Elsevier, vol. 136(3), pages 541-550, February.
    2. Dubois, Didier & Fargier, Helene & Fortemps, Philippe, 2003. "Fuzzy scheduling: Modelling flexible constraints vs. coping with incomplete knowledge," European Journal of Operational Research, Elsevier, vol. 147(2), pages 231-252, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kasperski, Adam & Zielinski, Pawel, 2010. "Minmax regret approach and optimality evaluation in combinatorial optimization problems with interval and fuzzy weights," European Journal of Operational Research, Elsevier, vol. 200(3), pages 680-687, February.
    2. Yonghong Li & Li Li & Jiang Li & Dong Qiu & Huiming Duan, 2020. "Bases of G - V Intuitionistic Fuzzy Matroids," Mathematics, MDPI, vol. 8(9), pages 1-14, August.
    3. Ru Liang & Changzhi Wu & Zhaohan Sheng & Xiangyu Wang, 2018. "Multi-Criterion Two-Sided Matching of Public–Private Partnership Infrastructure Projects: Criteria and Methods," Sustainability, MDPI, vol. 10(4), pages 1-22, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kasperski, Adam & Zielinski, Pawel, 2010. "Minmax regret approach and optimality evaluation in combinatorial optimization problems with interval and fuzzy weights," European Journal of Operational Research, Elsevier, vol. 200(3), pages 680-687, February.
    2. Yakhchali, Siamak Haji & Ghodsypour, Seyed Hassan, 2010. "Computing latest starting times of activities in interval-valued networks with minimal time lags," European Journal of Operational Research, Elsevier, vol. 200(3), pages 874-880, February.
    3. Meloni, Carlo & Pranzo, Marco & Samà, Marcella, 2022. "Evaluation of VaR and CVaR for the makespan in interval valued blocking job shops," International Journal of Production Economics, Elsevier, vol. 247(C).
    4. He-Yau Kang & Amy H. I. Lee & Tzu-Ting Huang, 2016. "Project Management for a Wind Turbine Construction by Applying Fuzzy Multiple Objective Linear Programming Models," Energies, MDPI, vol. 9(12), pages 1-15, December.
    5. Tsao, Yu-Chung & Thanh, Vo-Van, 2019. "A multi-objective mixed robust possibilistic flexible programming approach for sustainable seaport-dry port network design under an uncertain environment," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 124(C), pages 13-39.
    6. Tsao, Yu-Chung & Thanh, Vo-Van, 2021. "Toward sustainable microgrids with blockchain technology-based peer-to-peer energy trading mechanism: A fuzzy meta-heuristic approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 136(C).
    7. Bhaskar, Tarun & Pal, Manabendra N. & Pal, Asim K., 2011. "A heuristic method for RCPSP with fuzzy activity times," European Journal of Operational Research, Elsevier, vol. 208(1), pages 57-66, January.
    8. Conde, Eduardo, 2012. "On a constant factor approximation for minmax regret problems using a symmetry point scenario," European Journal of Operational Research, Elsevier, vol. 219(2), pages 452-457.
    9. Peidro, David & Mula, Josefa & Jiménez, Mariano & del Mar Botella, Ma, 2010. "A fuzzy linear programming based approach for tactical supply chain planning in an uncertainty environment," European Journal of Operational Research, Elsevier, vol. 205(1), pages 65-80, August.
    10. Bocewicz Grzegorz & Banaszak Zbigniew, 2009. "Abductive Reasoning Driven Approach to Project - Like Production Flow Prototyping," Foundations of Management, Sciendo, vol. 1(1), pages 43-62, January.
    11. Black, Gary W. & McKay, Kenneth N. & Morton, Thomas E., 2006. "Aversion scheduling in the presence of risky jobs," European Journal of Operational Research, Elsevier, vol. 175(1), pages 338-361, November.
    12. Wang, Juite & Shu, Yun-Feng, 2007. "A possibilistic decision model for new product supply chain design," European Journal of Operational Research, Elsevier, vol. 177(2), pages 1044-1061, March.
    13. Chen, Shih-Pin, 2007. "Analysis of critical paths in a project network with fuzzy activity times," European Journal of Operational Research, Elsevier, vol. 183(1), pages 442-459, November.
    14. Relich Marcin, 2012. "An evaluation of project completion with application of fuzzy set theory," Management, Sciendo, vol. 16(1), pages 216-229, May.
    15. Guillaume, Romain & Houé, Raymond & Grabot, Bernard, 2014. "Robust competence assessment for job assignment," European Journal of Operational Research, Elsevier, vol. 238(2), pages 630-644.
    16. Carlo Meloni & Marco Pranzo, 2020. "Expected shortfall for the makespan in activity networks under imperfect information," Flexible Services and Manufacturing Journal, Springer, vol. 32(3), pages 668-692, September.
    17. Dubois, Didier & Fargier, Helene & Galvagnon, Vincent, 2003. "On latest starting times and floats in activity networks with ill-known durations," European Journal of Operational Research, Elsevier, vol. 147(2), pages 266-280, June.
    18. Lee, Sangbok & Yih, Yuehwern, 2014. "Reducing patient-flow delays in surgical suites through determining start-times of surgical cases," European Journal of Operational Research, Elsevier, vol. 238(2), pages 620-629.
    19. Li He & Qiyan Cao & Fengjun Shang, 2019. "Measuring Component Importance for Network System Using Cellular Automata," Complexity, Hindawi, vol. 2019, pages 1-11, May.
    20. Conde, Eduardo, 2009. "A minmax regret approach to the critical path method with task interval times," European Journal of Operational Research, Elsevier, vol. 197(1), pages 235-242, August.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:177:y:2007:i:2:p:851-864. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.