Advanced Search
MyIDEAS: Login to save this article or follow this journal

Finite sample inference for quantile regression models

Contents:

Author Info

  • Chernozhukov, Victor
  • Hansen, Christian
  • Jansson, Michael

Abstract

Under minimal assumptions, finite sample confidence bands for quantile regression models can be constructed. These confidence bands are based on the "conditional pivotal property" of estimating equations that quantile regression methods solve and provide valid finite sample inference for linear and nonlinear quantile models with endogenous or exogenous covariates. The confidence regions can be computed using Markov Chain Monte Carlo (MCMC) methods. We illustrate the finite sample procedure through two empirical examples: estimating a heterogeneous demand elasticity and estimating heterogeneous returns to schooling. We find pronounced differences between asymptotic and finite sample confidence regions in cases where the usual asymptotics are suspect.

Download Info

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
File URL: http://www.sciencedirect.com/science/article/B6VC0-4VCH719-1/2/08adc888e8e84651e48a1d3ffdf64c79
Download Restriction: Full text for ScienceDirect subscribers only

As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

Bibliographic Info

Article provided by Elsevier in its journal Journal of Econometrics.

Volume (Year): 152 (2009)
Issue (Month): 2 (October)
Pages: 93-103

as in new window
Handle: RePEc:eee:econom:v:152:y:2009:i:2:p:93-103

Contact details of provider:
Web page: http://www.elsevier.com/locate/jeconom

Related research

Keywords: Extremal quantile regression Instrumental quantile regression Partial identification Weak identification;

References

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:
as in new window
  1. James H. Stock & Jonathan Wright, 2000. "GMM with Weak Identification," Econometrica, Econometric Society, vol. 68(5), pages 1055-1096, September.
  2. Chernozhukov, Victor & Imbens, Guido W. & Newey, Whitney K., 2007. "Instrumental variable estimation of nonseparable models," Journal of Econometrics, Elsevier, vol. 139(1), pages 4-14, July.
  3. Roger Koenker & Zhijie Xiao, 2004. "Unit Root Quantile Autoregression Inference," Journal of the American Statistical Association, American Statistical Association, vol. 99, pages 775-787, January.
  4. Pakes, Ariel & Pollard, David, 1989. "Simulation and the Asymptotics of Optimization Estimators," Econometrica, Econometric Society, vol. 57(5), pages 1027-57, September.
  5. Chernozhukov, Victor & Hansen, Christian, 2006. "Instrumental quantile regression inference for structural and treatment effect models," Journal of Econometrics, Elsevier, vol. 132(2), pages 491-525, June.
  6. Koenker,Roger, 2005. "Quantile Regression," Cambridge Books, Cambridge University Press, number 9780521608275.
  7. Joshua Angrist & Alan Krueger, 1990. "Does Compulsory School Attendance Affect Schooling and Earnings?," Working Papers 653, Princeton University, Department of Economics, Industrial Relations Section..
  8. Andrew Chesher, 2003. "Identification in Nonseparable Models," Econometrica, Econometric Society, vol. 71(5), pages 1405-1441, 09.
  9. Rosa L. Matzkin, 1999. "Nonparametric Estimation of Nonadditive Random Functions," Working Papers 38, Universidad de San Andres, Departamento de Economia, revised Sep 2001.
  10. Newey, Whitney K., 1997. "Convergence rates and asymptotic normality for series estimators," Journal of Econometrics, Elsevier, vol. 79(1), pages 147-168, July.
  11. He X. & Hu F., 2002. "Markov Chain Marginal Bootstrap," Journal of the American Statistical Association, American Statistical Association, vol. 97, pages 783-795, September.
  12. Koenker, Roger W & Bassett, Gilbert, Jr, 1978. "Regression Quantiles," Econometrica, Econometric Society, vol. 46(1), pages 33-50, January.
  13. Luojia Hu, 2002. "Estimation of a Censored Dynamic Panel Data Model," Econometrica, Econometric Society, vol. 70(6), pages 2499-2517, November.
  14. Douglas Staiger & James H. Stock, 1997. "Instrumental Variables Regression with Weak Instruments," Econometrica, Econometric Society, vol. 65(3), pages 557-586, May.
  15. Victor Chernozhukov & Christian Hansen, 2005. "An IV Model of Quantile Treatment Effects," Econometrica, Econometric Society, vol. 73(1), pages 245-261, 01.
  16. Gary Chamberlain & Guido Imbens, 2004. "Random Effects Estimators with many Instrumental Variables," Econometrica, Econometric Society, vol. 72(1), pages 295-306, 01.
  17. Graddy, K., 1993. "Testing for Imperfect Competition at the Fulton Fish Market," Papers 137, Princeton, Department of Economics - Financial Research Center.
  18. Hansen, Lars Peter & Heaton, John & Yaron, Amir, 1996. "Finite-Sample Properties of Some Alternative GMM Estimators," Journal of Business & Economic Statistics, American Statistical Association, vol. 14(3), pages 262-80, July.
  19. Chernozhukov, Victor & Hansen, Christian, 2008. "Instrumental variable quantile regression: A robust inference approach," Journal of Econometrics, Elsevier, vol. 142(1), pages 379-398, January.
  20. Chernozhukov, Victor & Hong, Han, 2003. "An MCMC approach to classical estimation," Journal of Econometrics, Elsevier, vol. 115(2), pages 293-346, August.
Full references (including those not matched with items on IDEAS)

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as in new window

Cited by:
  1. Oliver Gossner & Karl Schlag, 2012. "Finite Sample Exact tests for Linear," Vienna Economics Papers 1201, University of Vienna, Department of Economics.
  2. David Kaplan & Yixiao Sun, 2013. "Smoothed Estimating Equations for Instrumental Variables Quantile Regression," Working Papers 1314, Department of Economics, University of Missouri.
  3. Elise Coudin & Jean-Marie Dufour, 2010. "Finite and Large Sample Distribution-Free Inference in Median Regressions with Instrumental Variables," Working Papers 2010-56, Centre de Recherche en Economie et Statistique.
  4. Otsu, Taisuke, 2008. "Conditional empirical likelihood estimation and inference for quantile regression models," Journal of Econometrics, Elsevier, vol. 142(1), pages 508-538, January.
  5. Victor Chernozhukov & Christian Hansen, 2013. "Quantile models with endogeneity," CeMMAP working papers CWP25/13, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
  6. Jun, Sung Jae, 2008. "Weak identification robust tests in an instrumental quantile model," Journal of Econometrics, Elsevier, vol. 144(1), pages 118-138, May.
  7. Laffers, Lukas, 2013. "Identification in Models with Discrete Variables," Discussion Paper Series in Economics 1/2013, Department of Economics, Norwegian School of Economics.
  8. Gossner, Olivier & Schlag, Karl H., 2013. "Finite-sample exact tests for linear regressions with bounded dependent variables," Journal of Econometrics, Elsevier, vol. 177(1), pages 75-84.
  9. Luger, Richard, 2012. "Finite-sample bootstrap inference in GARCH models with heavy-tailed innovations," Computational Statistics & Data Analysis, Elsevier, vol. 56(11), pages 3198-3211.
  10. Zhongjun Qu & Jungmo Yoon, 2011. "Nonparametric Estimation and Inference on Conditional Quantile Processes," Boston University - Department of Economics - Working Papers Series WP2011-059, Boston University - Department of Economics.

Lists

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

Statistics

Access and download statistics

Corrections

When requesting a correction, please mention this item's handle: RePEc:eee:econom:v:152:y:2009:i:2:p:93-103. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Zhang, Lei).

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.