IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v329y2016icp64-76.html
   My bibliography  Save this article

Forest soil carbon and nitrogen cycles under biomass harvest: Stability, transient response, and feedback

Author

Listed:
  • Parolari, Anthony J.
  • Porporato, Amilcare

Abstract

Biomass harvest generates an imbalance in forest carbon (C) and nitrogen (N) cycles and the nonlinear biogeochemical responses may have long-term consequences for soil fertility and sustainable management. We analyze these dynamics and characterize the impact of biomass harvest and N fertilization on soil biogeochemistry and ecosystem yield with an ecosystem model of intermediate complexity that couples plant and soil C and N cycles. Two harvest schemes are modeled: continuous harvest at low intensity and periodic clear-cut harvest. Continuously-harvested systems sustain N harvest at steady-state under net mineralization conditions, which depends on the C:N ratio and respiration rate of decomposers. Further, linear stability analysis reveals steady-state harvest regimes are associated with stable foci, indicating oscillations in C and N pools that decay with time after harvest. Modeled ecosystems under periodic clear-cut harvest operate in a limit-cycle with net mineralization on average. However, when N limitation is strong, soil C–N cycling switches between net immobilization and net mineralization through time. The model predicts an optimal rotation length associated with a maximum sustainable yield (MSY) and minimum external N losses. Through non-linear plant–soil feedbacks triggered by harvest, strong N limitation promotes short periods of immobilization and mineral N retention, which alter the relation between MSY and N losses. Rotational systems use N more efficiently than continuous systems with equivalent biomass yield as immobilization protects mineral N from leaching losses. These results highlight dynamic soil C–N cycle responses to harvest strategy that influence a range of functional characteristics, including N retention, leaching, and biomass yield.

Suggested Citation

  • Parolari, Anthony J. & Porporato, Amilcare, 2016. "Forest soil carbon and nitrogen cycles under biomass harvest: Stability, transient response, and feedback," Ecological Modelling, Elsevier, vol. 329(C), pages 64-76.
  • Handle: RePEc:eee:ecomod:v:329:y:2016:i:c:p:64-76
    DOI: 10.1016/j.ecolmodel.2016.03.003
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S030438001630062X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2016.03.003?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Steven S. Perakis & Lars O. Hedin, 2002. "addendum: Nitrogen loss from unpolluted South American forests mainly via dissolved organic compounds," Nature, Nature, vol. 418(6898), pages 665-665, August.
    2. Daniel D. Richter & Daniel Markewitz & Susan E. Trumbore & Carol G. Wells, 1999. "Rapid accumulation and turnover of soil carbon in a re-establishing forest," Nature, Nature, vol. 400(6739), pages 56-58, July.
    3. Steven S. Perakis & Lars O. Hedin, 2002. "Nitrogen loss from unpolluted South American forests mainly via dissolved organic compounds," Nature, Nature, vol. 415(6870), pages 416-419, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Parolari, Anthony J. & Mobley, Megan L. & Bacon, Allan R. & Katul, Gabriel G. & Richter, Daniel deB. & Porporato, Amilcare, 2017. "Boom and bust carbon-nitrogen dynamics during reforestation," Ecological Modelling, Elsevier, vol. 360(C), pages 108-119.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Parolari, Anthony J. & Mobley, Megan L. & Bacon, Allan R. & Katul, Gabriel G. & Richter, Daniel deB. & Porporato, Amilcare, 2017. "Boom and bust carbon-nitrogen dynamics during reforestation," Ecological Modelling, Elsevier, vol. 360(C), pages 108-119.
    2. Chao Xu & Teng-Chiu Lin & Jr-Chuan Huang & Zhijie Yang & Xiaofei Liu & Decheng Xiong & Shidong Chen & Minhuang Wang & Liuming Yang & Yusheng Yang, 2022. "Microbial Biomass Is More Important than Runoff Export in Predicting Soil Inorganic Nitrogen Concentrations Following Forest Conversion in Subtropical China," Land, MDPI, vol. 11(2), pages 1-15, February.
    3. Jay S. Singh & D.P. Singh & A.K. Kashyap, 2009. "A comparative account of the microbial biomass-N and N-mineralization of soils under natural forest, grassland and crop field from dry tropical region, India," Plant, Soil and Environment, Czech Academy of Agricultural Sciences, vol. 55(6), pages 223-230.
    4. Ritam Sinha & Sourav Das & Tuhin Ghosh, 2020. "Pollution and its consequences at Ganga Sagar mass bathing in India," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 22(2), pages 1413-1430, February.
    5. Maoyuan Feng & Shushi Peng & Yilong Wang & Philippe Ciais & Daniel S. Goll & Jinfeng Chang & Yunting Fang & Benjamin Z. Houlton & Gang Liu & Yan Sun & Yi Xi, 2023. "Overestimated nitrogen loss from denitrification for natural terrestrial ecosystems in CMIP6 Earth System Models," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    6. H. Zhang & Z. Zhao & X. Yi & Y. Lu & L. Cao, 2012. "Effect of fertilization on composition and spatial distribution of dissolved organic nitrogen in paddy soil microbial systems," Plant, Soil and Environment, Czech Academy of Agricultural Sciences, vol. 58(3), pages 128-134.
    7. Chengzhang Liao & Yiqi Luo & Changming Fang & Bo Li, 2010. "Ecosystem Carbon Stock Influenced by Plantation Practice: Implications for Planting Forests as a Measure of Climate Change Mitigation," PLOS ONE, Public Library of Science, vol. 5(5), pages 1-6, May.
    8. Ondřej HOLUBÍK & Vilém PODRÁZSKÝ & Jan VOPRAVIL & Tomáš KHEL & Jiří REMEŠ, 2014. "Effect of agricultural lands afforestation and tree species composition on the soil reaction, total organic carbon and nitrogen content in the uppermost mineral soil profile," Soil and Water Research, Czech Academy of Agricultural Sciences, vol. 9(4), pages 192-200.
    9. Xiaomin Qin & Dongmei Zhao & Baojun Zhang & Donghong Xiong & Zhengrong Yuan & Wenduo Zhang & Lin Liu & Dil Kumar Rai & Sheikh Laraib & Wei Deng, 2023. "Spatiotemporal Dynamics and Drivers of Wind Erosion during 1990–2020 in the Yarlung Zangbo River Basin, Southern Tibetan Plateau," Land, MDPI, vol. 12(9), pages 1-20, August.
    10. Hefeng Wang & Yishao Shi & Anbing Zhang & Yuan Cao & Haixin Liu, 2017. "Does Suburbanization Cause Ecological Deterioration? An Empirical Analysis of Shanghai, China," Sustainability, MDPI, vol. 9(1), pages 1-17, January.
    11. Tomas Selecky & Sonoko D. Bellingrath-Kimura & Yuji Kobata & Masaaki Yamada & Iraê A. Guerrini & Helio M. Umemura & Dinaldo A. Dos Santos, 2017. "Changes in Carbon Cycling during Development of Successional Agroforestry," Agriculture, MDPI, vol. 7(3), pages 1-12, March.
    12. Pérez-López, Paula & Gasol, Carles M. & Oliver-Solà, Jordi & Huelin, Sagrario & Moreira, Ma Teresa & Feijoo, Gumersindo, 2013. "Greenhouse gas emissions from Spanish motorway transport: Key aspects and mitigation solutions," Energy Policy, Elsevier, vol. 60(C), pages 705-713.
    13. Viorel Blujdea & David Bird & Carmenza Robledo, 2010. "Consistency and comparability of estimation and accounting of removal by sinks in afforestation/reforestation activities," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 15(1), pages 1-18, January.
    14. R. Daniel Hanks & Robert F. Baldwin & Travis H. Folk & Ernie P. Wiggers & Richard H. Coen & Michael L. Gouin & Andrew Agha & Daniel D. Richter & Edda L. Fields-Black, 2021. "Mapping Antebellum Rice Fields as a Basis for Understanding Human and Ecological Consequences of the Era of Slavery," Land, MDPI, vol. 10(8), pages 1-15, August.
    15. Christopher Galik & Megan Mobley & Daniel Richter, 2009. "A virtual “field test” of forest management carbon offset protocols: the influence of accounting," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 14(7), pages 677-690, October.
    16. Huang, Lin & Liu, Jiyuan & Shao, Quanqin & Xu, Xinliang, 2012. "Carbon sequestration by forestation across China: Past, present, and future," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(2), pages 1291-1299.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:329:y:2016:i:c:p:64-76. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.