IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v319y2016icp31-41.html
   My bibliography  Save this article

Changes in food web structure and ecosystem functioning of a large, shallow Chinese lake during the 1950s, 1980s and 2000s

Author

Listed:
  • Kong, Xiangzhen
  • He, Wei
  • Liu, Wenxiu
  • Yang, Bin
  • Xu, Fuliu
  • Jørgensen, Sven Erik
  • Mooij, Wolf M.

Abstract

Food web structure dynamics and ecosystem functioning are strongly linked, and both are indispensable in evaluating ecosystem development in lakes under multiple anthropogenic stressors. However, model-based approaches concerning the changes in food web structure and ecosystem functioning in a certain lake during distinct periods are scarce. In this study, we focus on Lake Chaohu, the fifth-largest lake in China, which has undergone drastic changes over the last several decades. Data from the 1950s, 1980s and 2000s were used to create three Ecopath mass-balance models. These Ecopath models were validated by the stable isotope-determined trophic level (TL) for each functional group, which indicated an acceptable model performance. Over time, we observed a collapse of the food web toward a simplified structure and decreasing biodiversity and trophic interactions. The lake ecosystem was approaching an immature but stable status from the 1950s to the 2000s, as indicated by the multiple related indicators and the distribution of energy flows in slow detrital-based and fast primary producer-based channels. We further discuss the potential driving factors and underlying mechanisms, hypothesizing that hydrological regulation may play a significant role in driving all of these changes in Lake Chaohu in addition to eutrophication and intensive fishery. Overall, we strongly advocate the identification of a threshold in abundance of zooplanktivorous fish, an integrated strategy for future ecological restoration in Lake Chaohu, and the consideration of using Ecopath as a new management tool for other lakes, thereby bridging the strategies from both environmental and ecological perspectives.

Suggested Citation

  • Kong, Xiangzhen & He, Wei & Liu, Wenxiu & Yang, Bin & Xu, Fuliu & Jørgensen, Sven Erik & Mooij, Wolf M., 2016. "Changes in food web structure and ecosystem functioning of a large, shallow Chinese lake during the 1950s, 1980s and 2000s," Ecological Modelling, Elsevier, vol. 319(C), pages 31-41.
  • Handle: RePEc:eee:ecomod:v:319:y:2016:i:c:p:31-41
    DOI: 10.1016/j.ecolmodel.2015.06.045
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380015003014
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2015.06.045?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Fetahi, Tadesse & Schagerl, Michael & Mengistou, Seyoum & Libralato, Simone, 2011. "Food web structure and trophic interactions of the tropical highland lake Hayq, Ethiopia," Ecological Modelling, Elsevier, vol. 222(3), pages 804-813.
    2. Marchi, Michela & Jørgensen, Sven Erik & Bécares, Eloy & Corsi, Ilaria & Marchettini, Nadia & Bastianoni, Simone, 2011. "Dynamic model of Lake Chozas (León, NW Spain)—Decrease in eco-exergy from clear to turbid phase due to introduction of exotic crayfish," Ecological Modelling, Elsevier, vol. 222(16), pages 3002-3010.
    3. Jan J. Kuiper & Cassandra van Altena & Peter C. de Ruiter & Luuk P. A. van Gerven & Jan H. Janse & Wolf M. Mooij, 2015. "Food-web stability signals critical transitions in temperate shallow lakes," Nature Communications, Nature, vol. 6(1), pages 1-7, November.
    4. Marten Scheffer & Steve Carpenter & Jonathan A. Foley & Carl Folke & Brian Walker, 2001. "Catastrophic shifts in ecosystems," Nature, Nature, vol. 413(6856), pages 591-596, October.
    5. Neil Rooney & Kevin McCann & Gabriel Gellner & John C. Moore, 2006. "Structural asymmetry and the stability of diverse food webs," Nature, Nature, vol. 442(7100), pages 265-269, July.
    6. Shan, Kun & Li, Lin & Wang, Xiaoxiao & Wu, Yanlong & Hu, Lili & Yu, Gongliang & Song, Lirong, 2014. "Modelling ecosystem structure and trophic interactions in a typical cyanobacterial bloom-dominated shallow Lake Dianchi, China," Ecological Modelling, Elsevier, vol. 291(C), pages 82-95.
    7. Guo, Chuanbo & Ye, Shaowen & Lek, Sovan & Liu, Jiashou & Zhang, Tanglin & Yuan, Jin & Li, Zhongjie, 2013. "The need for improved fishery management in a shallow macrophytic lake in the Yangtze River basin: Evidence from the food web structure and ecosystem analysis," Ecological Modelling, Elsevier, vol. 267(C), pages 138-147.
    8. Kong, Xiang-Zhen & Jørgensen, Sven Erik & He, Wei & Qin, Ning & Xu, Fu-Liu, 2013. "Predicting the restoration effects by a structural dynamic approach in Lake Chaohu, China," Ecological Modelling, Elsevier, vol. 266(C), pages 73-85.
    9. Jia, Peiqiao & Hu, Menghong & Hu, Zhongjun & Liu, Qigen & Wu, Zhen, 2012. "Modeling trophic structure and energy flows in a typical macrophyte dominated shallow lake using the mass balanced model," Ecological Modelling, Elsevier, vol. 233(C), pages 26-30.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shan, Kun & Li, Lin & Wang, Xiaoxiao & Wu, Yanlong & Hu, Lili & Yu, Gongliang & Song, Lirong, 2014. "Modelling ecosystem structure and trophic interactions in a typical cyanobacterial bloom-dominated shallow Lake Dianchi, China," Ecological Modelling, Elsevier, vol. 291(C), pages 82-95.
    2. Chea, Ratha & Guo, Chuanbo & Grenouillet, Gaël & Lek, Sovan, 2016. "Toward an ecological understanding of a flood-pulse system lake in a tropical ecosystem: Food web structure and ecosystem health," Ecological Modelling, Elsevier, vol. 323(C), pages 1-11.
    3. Kong, Xiang-Zhen & Jørgensen, Sven Erik & He, Wei & Qin, Ning & Xu, Fu-Liu, 2013. "Predicting the restoration effects by a structural dynamic approach in Lake Chaohu, China," Ecological Modelling, Elsevier, vol. 266(C), pages 73-85.
    4. Guo, Chuanbo & Ye, Shaowen & Lek, Sovan & Liu, Jiashou & Zhang, Tanglin & Yuan, Jin & Li, Zhongjie, 2013. "The need for improved fishery management in a shallow macrophytic lake in the Yangtze River basin: Evidence from the food web structure and ecosystem analysis," Ecological Modelling, Elsevier, vol. 267(C), pages 138-147.
    5. Marchi, Michela & Jørgensen, Sven Erik & Bécares, Eloy & Corsi, Ilaria & Marchettini, Nadia & Bastianoni, Simone, 2011. "Resistance and re-organization of an ecosystem in response to biological invasion: Some hypotheses," Ecological Modelling, Elsevier, vol. 222(16), pages 2992-3001.
    6. Wang, Yuyu & Kao, Yu-Chun & Zhou, Yangming & Zhang, Huan & Yu, Xiubo & Lei, Guangchun, 2019. "Can water level management, stock enhancement, and fishery restriction offset negative effects of hydrological changes on the four major Chinese carps in China’s largest freshwater lake?," Ecological Modelling, Elsevier, vol. 403(C), pages 1-10.
    7. Ian Hodge & William M. Adams, 2016. "Short-Term Projects versus Adaptive Governance: Conflicting Demands in the Management of Ecological Restoration," Land, MDPI, vol. 5(4), pages 1-17, November.
    8. Jenerette, G. Darrel & Lal, Rattan, 2007. "Modeled carbon sequestration variation in a linked erosion–deposition system," Ecological Modelling, Elsevier, vol. 200(1), pages 207-216.
    9. Rustici, M. & Ceccherelli, G. & Piazzi, L., 2017. "Predator exploitation and sea urchin bistability: Consequence on benthic alternative states," Ecological Modelling, Elsevier, vol. 344(C), pages 1-5.
    10. Rodrigues, João & Domingos, Tiago & Conceição, Pedro & Belbute, José, 2005. "Constraints on dematerialisation and allocation of natural capital along a sustainable growth path," Ecological Economics, Elsevier, vol. 54(4), pages 382-396, September.
    11. Xu Luo & Hong S. He & Yu Liang & Jacob S. Fraser & Jialin Li, 2018. "Mitigating the Effects of Climate Change through Harvesting and Planting in Boreal Forests of Northeastern China," Sustainability, MDPI, vol. 10(10), pages 1-20, October.
    12. Carlos Sanz-Lazaro, 2019. "A Framework to Advance the Understanding of the Ecological Effects of Extreme Climate Events," Sustainability, MDPI, vol. 11(21), pages 1-18, October.
    13. Teh, Su Yean & DeAngelis, Donald L. & Sternberg, Leonel da Silveira Lobo & Miralles-Wilhelm, Fernando R. & Smith, Thomas J. & Koh, Hock-Lye, 2008. "A simulation model for projecting changes in salinity concentrations and species dominance in the coastal margin habitats of the Everglades," Ecological Modelling, Elsevier, vol. 213(2), pages 245-256.
    14. Grolleau, Gilles & Ibanez, Lisette & Mzoughi, Naoufel, 2020. "Moral judgment of environmental harm caused by a single versus multiple wrongdoers: A survey experiment," Ecological Economics, Elsevier, vol. 170(C).
    15. Paul L. G. Vlek & Asia Khamzina & Hossein Azadi & Anik Bhaduri & Luna Bharati & Ademola Braimoh & Christopher Martius & Terry Sunderland & Fatemeh Taheri, 2017. "Trade-Offs in Multi-Purpose Land Use under Land Degradation," Sustainability, MDPI, vol. 9(12), pages 1-19, November.
    16. Sonia Kéfi & Vishwesha Guttal & William A Brock & Stephen R Carpenter & Aaron M Ellison & Valerie N Livina & David A Seekell & Marten Scheffer & Egbert H van Nes & Vasilis Dakos, 2014. "Early Warning Signals of Ecological Transitions: Methods for Spatial Patterns," PLOS ONE, Public Library of Science, vol. 9(3), pages 1-13, March.
    17. Monika Winn & Manfred Kirchgeorg & Andrew Griffiths & Martina K. Linnenluecke & Elmar Günther, 2011. "Impacts from climate change on organizations: a conceptual foundation," Business Strategy and the Environment, Wiley Blackwell, vol. 20(3), pages 157-173, March.
    18. Duncan A. O’Brien & Smita Deb & Gideon Gal & Stephen J. Thackeray & Partha S. Dutta & Shin-ichiro S. Matsuzaki & Linda May & Christopher F. Clements, 2023. "Early warning signals have limited applicability to empirical lake data," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    19. Can Askan Mavi & Nicolas Quérou, 2020. "Common pool resource management and risk perceptions," DEM Discussion Paper Series 20-25, Department of Economics at the University of Luxembourg.
    20. Shana M. Sundstrom & Craig R. Allen & David G. Angeler, 2020. "Scaling and discontinuities in the global economy," Journal of Evolutionary Economics, Springer, vol. 30(2), pages 319-345, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:319:y:2016:i:c:p:31-41. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.