IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v267y2013icp138-147.html
   My bibliography  Save this article

The need for improved fishery management in a shallow macrophytic lake in the Yangtze River basin: Evidence from the food web structure and ecosystem analysis

Author

Listed:
  • Guo, Chuanbo
  • Ye, Shaowen
  • Lek, Sovan
  • Liu, Jiashou
  • Zhang, Tanglin
  • Yuan, Jin
  • Li, Zhongjie

Abstract

There are numerous shallow macrophytic lakes distributed in the middle reaches of the Yangtze River basin, which are an important fishery resource for this part of China. However, there is limited knowledge about the food web structure and energy flows of these highly disturbed ecosystems, mainly due to lack of suitable ecosystem approaches applied to the abundant but isolated ecological data from these lakes. To better manage the important ecosystems, Ecopath with Ecosim was applied to establish a mass-balance model for a typical shallow macrophytic lake (Bao’an Lake) as a case study, with the aim of describing the food web structure and the properties of the ecosystem to evaluate the ecological implications for fishery resource management and the protection of the aquatic ecosystem of these lakes. Given that there were extensive first-hand data available for the target lake, a credible trophic model including 23 functional groups was constructed. The results showed that all the commercial fish groups suffered from high fishing pressure for their higher ecotrophic efficiency (EE) values, normally more than 0.5. On the contrary, forage resources such as attached algae, submerged plants and molluscs were not fully utilized by the lake fishery, with EE values even as low as 0.089, 0.120 and 0.126 respectively. The discrete trophic level of large culters was highest (3.143) in the lake ecosystem, followed by mandarin fish (3.138) and snakehead fish (3.131). For the transfer efficiencies in the food web structure, a mean value of 8.68% was calculated for the lake ecosystem. Ecosystem maturity indices such as TPP/TR (1.640), TPP/TB (6.993), as well as ascendency (0.387) which were derived from the network analysis together with the revealed detritus-based trophic flow, illustrated that the Bao’an Lake ecosystem was a mature system according to Odum's theory. However when compared with some other lake ecosystems, the Bao’an Lake ecosystem, as well as some China lake ecosystems, showed extremely low values of CI (Connectance index), FCI (Finn's cycling index) and SOI (system omnivory index), indicating that the food web structures of these Chinese lake ecosystems tended to be simpler and more linear than lake ecosystems in other countries. Consequently, this study established the first food web model for a shallow macrophytic lake and provided overall insights and ecosystem knowledge for this kind of shallow macrophytic lake, and indicated an urgent need for fishery resources management to shift from traditional population-based to ecosystem-based models.

Suggested Citation

  • Guo, Chuanbo & Ye, Shaowen & Lek, Sovan & Liu, Jiashou & Zhang, Tanglin & Yuan, Jin & Li, Zhongjie, 2013. "The need for improved fishery management in a shallow macrophytic lake in the Yangtze River basin: Evidence from the food web structure and ecosystem analysis," Ecological Modelling, Elsevier, vol. 267(C), pages 138-147.
  • Handle: RePEc:eee:ecomod:v:267:y:2013:i:c:p:138-147
    DOI: 10.1016/j.ecolmodel.2013.07.013
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S030438001300358X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2013.07.013?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Fetahi, Tadesse & Schagerl, Michael & Mengistou, Seyoum & Libralato, Simone, 2011. "Food web structure and trophic interactions of the tropical highland lake Hayq, Ethiopia," Ecological Modelling, Elsevier, vol. 222(3), pages 804-813.
    2. Liu, Qi-Gen & Chen, Yong & Li, Jia-Le & Chen, Li-Qiao, 2007. "The food web structure and ecosystem properties of a filter-feeding carps dominated deep reservoir ecosystem," Ecological Modelling, Elsevier, vol. 203(3), pages 279-289.
    3. Byron, Carrie & Link, Jason & Costa-Pierce, Barry & Bengtson, David, 2011. "Calculating ecological carrying capacity of shellfish aquaculture using mass-balance modeling: Narragansett Bay, Rhode Island," Ecological Modelling, Elsevier, vol. 222(10), pages 1743-1755.
    4. Xu, Shannan & Chen, Zuozhi & Li, Chunhou & Huang, Xiaoping & Li, Shiyu, 2011. "Assessing the carrying capacity of tilapia in an intertidal mangrove-based polyculture system of Pearl River Delta, China," Ecological Modelling, Elsevier, vol. 222(3), pages 846-856.
    5. Hossain, Md. Monir & Matsuishi, Takashi & Arhonditsis, George, 2010. "Elucidation of ecosystem attributes of an oligotrophic lake in Hokkaido, Japan, using Ecopath with Ecosim (EwE)," Ecological Modelling, Elsevier, vol. 221(13), pages 1717-1730.
    6. Villanueva, Maria Concepcion S. & Isumbisho, Mwapu & Kaningini, Boniface & Moreau, Jacques & Micha, Jean-Claude, 2008. "Modeling trophic interactions in Lake Kivu: What roles do exotics play?," Ecological Modelling, Elsevier, vol. 212(3), pages 422-438.
    7. Jia, Peiqiao & Hu, Menghong & Hu, Zhongjun & Liu, Qigen & Wu, Zhen, 2012. "Modeling trophic structure and energy flows in a typical macrophyte dominated shallow lake using the mass balanced model," Ecological Modelling, Elsevier, vol. 233(C), pages 26-30.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shan, Kun & Li, Lin & Wang, Xiaoxiao & Wu, Yanlong & Hu, Lili & Yu, Gongliang & Song, Lirong, 2014. "Modelling ecosystem structure and trophic interactions in a typical cyanobacterial bloom-dominated shallow Lake Dianchi, China," Ecological Modelling, Elsevier, vol. 291(C), pages 82-95.
    2. Kong, Xiangzhen & He, Wei & Liu, Wenxiu & Yang, Bin & Xu, Fuliu & Jørgensen, Sven Erik & Mooij, Wolf M., 2016. "Changes in food web structure and ecosystem functioning of a large, shallow Chinese lake during the 1950s, 1980s and 2000s," Ecological Modelling, Elsevier, vol. 319(C), pages 31-41.
    3. Chea, Ratha & Guo, Chuanbo & Grenouillet, Gaël & Lek, Sovan, 2016. "Toward an ecological understanding of a flood-pulse system lake in a tropical ecosystem: Food web structure and ecosystem health," Ecological Modelling, Elsevier, vol. 323(C), pages 1-11.
    4. Wang, Yuyu & Kao, Yu-Chun & Zhou, Yangming & Zhang, Huan & Yu, Xiubo & Lei, Guangchun, 2019. "Can water level management, stock enhancement, and fishery restriction offset negative effects of hydrological changes on the four major Chinese carps in China’s largest freshwater lake?," Ecological Modelling, Elsevier, vol. 403(C), pages 1-10.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shan, Kun & Li, Lin & Wang, Xiaoxiao & Wu, Yanlong & Hu, Lili & Yu, Gongliang & Song, Lirong, 2014. "Modelling ecosystem structure and trophic interactions in a typical cyanobacterial bloom-dominated shallow Lake Dianchi, China," Ecological Modelling, Elsevier, vol. 291(C), pages 82-95.
    2. Chea, Ratha & Guo, Chuanbo & Grenouillet, Gaël & Lek, Sovan, 2016. "Toward an ecological understanding of a flood-pulse system lake in a tropical ecosystem: Food web structure and ecosystem health," Ecological Modelling, Elsevier, vol. 323(C), pages 1-11.
    3. Kong, Xiangzhen & He, Wei & Liu, Wenxiu & Yang, Bin & Xu, Fuliu & Jørgensen, Sven Erik & Mooij, Wolf M., 2016. "Changes in food web structure and ecosystem functioning of a large, shallow Chinese lake during the 1950s, 1980s and 2000s," Ecological Modelling, Elsevier, vol. 319(C), pages 31-41.
    4. Tesfaye, Gashaw & Wolff, Matthias, 2018. "Modeling trophic interactions and the impact of an introduced exotic carp species in the Rift Valley Lake Koka, Ethiopia," Ecological Modelling, Elsevier, vol. 378(C), pages 26-36.
    5. Han, Jeong-Ho & Kumar, Hema K. & Lee, Jae Hoon & Zhang, Chang-Ik & Kim, Se-Wha & Lee, Jung-Ho & Kim, Sang Don & An, Kwang-Guk, 2011. "Integrative trophic network assessments of a lentic ecosystem by key ecological approaches of water chemistry, trophic guilds, and ecosystem health assessments along with an ECOPATH model," Ecological Modelling, Elsevier, vol. 222(19), pages 3457-3472.
    6. Ortiz, Marco & Berrios, Fernando & Campos, Leonardo & Uribe, Roberto & Ramirez, Alejandro & Hermosillo-Núñez, Brenda & González, Jorge & Rodriguez-Zaragoza, Fabián, 2015. "Mass balanced trophic models and short-term dynamical simulations for benthic ecological systems of Mejillones and Antofagasta bays (SE Pacific): Comparative network structure and assessment of human ," Ecological Modelling, Elsevier, vol. 309, pages 153-162.
    7. Hossain, Md. Monir & Matsuishi, Takashi & Arhonditsis, George, 2010. "Elucidation of ecosystem attributes of an oligotrophic lake in Hokkaido, Japan, using Ecopath with Ecosim (EwE)," Ecological Modelling, Elsevier, vol. 221(13), pages 1717-1730.
    8. Jia, Peiqiao & Hu, Menghong & Hu, Zhongjun & Liu, Qigen & Wu, Zhen, 2012. "Modeling trophic structure and energy flows in a typical macrophyte dominated shallow lake using the mass balanced model," Ecological Modelling, Elsevier, vol. 233(C), pages 26-30.
    9. Liping Zhang & Shiwen Zhang & Yajie Huang & Meng Cao & Yuanfang Huang & Hongyan Zhang, 2016. "Exploring an Ecologically Sustainable Scheme for Landscape Restoration of Abandoned Mine Land: Scenario-Based Simulation Integrated Linear Programming and CLUE-S Model," IJERPH, MDPI, vol. 13(4), pages 1-20, March.
    10. Teresa R. Johnson & Kate Beard & Damian C. Brady & Carrie J. Byron & Caitlin Cleaver & Kevin Duffy & Nicholas Keeney & Melissa Kimble & Molly Miller & Shane Moeykens & Mario Teisl & G. Peter van Walsu, 2019. "A Social-Ecological System Framework for Marine Aquaculture Research," Sustainability, MDPI, vol. 11(9), pages 1-20, April.
    11. Gatmiry, Zohreh S. & Hafezalkotob, Ashkan & Khakzar bafruei, Morteza & Soltani, Roya, 2021. "Food web conservation vs. strategic threats: A security game approach," Ecological Modelling, Elsevier, vol. 442(C).
    12. Yi-ping Fang & Fu-biao Zhu & Shu-hua Yi & Xiao-ping Qiu & Yong-jiang Ding, 2021. "Ecological carrying capacity of alpine grassland in the Qinghai–Tibet Plateau based on the structural dynamics method," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(8), pages 12550-12578, August.
    13. Wang, Shuran Cindy & Liu, Xueqin & Liu, Yong & Wang, Hongzhu, 2020. "Benthic-pelagic coupling in lake energetic food webs," Ecological Modelling, Elsevier, vol. 417(C).
    14. Zhao, Yunxia & Zhang, Jihong & Lin, Fan & Ren, Jeffrey S. & Sun, Ke & Liu, Yi & Wu, Wenguang & Wang, Wei, 2019. "An ecosystem model for estimating shellfish production carrying capacity in bottom culture systems," Ecological Modelling, Elsevier, vol. 393(C), pages 1-11.
    15. Savoca, S. & Grifó, G. & Panarello, G. & Albano, M. & Giacobbe, S. & Capillo, G. & Spanó, N. & Consolo, G., 2020. "Modelling prey-predator interactions in Messina beachrock pools," Ecological Modelling, Elsevier, vol. 434(C).
    16. Kluger, Lotta C. & Taylor, Marc H. & Mendo, Jaime & Tam, Jorge & Wolff, Matthias, 2016. "Carrying capacity simulations as a tool for ecosystem-based management of a scallop aquaculture system," Ecological Modelling, Elsevier, vol. 331(C), pages 44-55.
    17. Duan, L.J. & Li, S.Y. & Liu, Y. & Moreau, J. & Christensen, V., 2009. "Modeling changes in the coastal ecosystem of the Pearl River Estuary from 1981 to 1998," Ecological Modelling, Elsevier, vol. 220(20), pages 2802-2818.
    18. Han, Dongyan & Chen, Yong & Zhang, Chongliang & Ren, Yiping & Xue, Ying & Wan, Rong, 2017. "Evaluating impacts of intensive shellfish aquaculture on a semi-closed marine ecosystem," Ecological Modelling, Elsevier, vol. 359(C), pages 193-200.
    19. Kankan Wu & Keliang Chen & Yu Gao & Shang Jiang & Haiping Huang, 2022. "Applying a Set of Potential Methods for the Integrated Assessment of the Marine Eco-Environmental Carrying Capacity in Coastal Areas," Sustainability, MDPI, vol. 14(8), pages 1-17, April.
    20. Feroz Khan, M. & Panikkar, Preetha, 2009. "Assessment of impacts of invasive fishes on the food web structure and ecosystem properties of a tropical reservoir in India," Ecological Modelling, Elsevier, vol. 220(18), pages 2281-2290.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:267:y:2013:i:c:p:138-147. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.