IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v221y2010i20p2491-2500.html
   My bibliography  Save this article

An agent-based model of red colobus resources and disease dynamics implicates key resource sites as hot spots of disease transmission

Author

Listed:
  • Bonnell, Tyler R.
  • Sengupta, Raja R.
  • Chapman, Colin A.
  • Goldberg, Tony L.

Abstract

The effect of anthropogenic landscape change on disease in wildlife populations represents a growing conservation and public health concern. Red colobus monkeys (Procolobus rufomitratus), an endangered primate species, are particularly susceptible to habitat alteration and have been the focus of a great deal of disease and ecological research as a result. To infer how landscape changes can affect host and parasite dynamics, a spatially explicit agent-based model is created to simulate movement and foraging of this primate, based on a resource landscape estimated from extensive plot-derived tree population data from Kibale National Park, Uganda. Changes to this resource landscape are used to simulate effects of anthropogenic forest change. With each change in the landscape, disease outcomes within the simulated red colobus population are monitored using a hypothetical microparasite with a directly transmitted life cycle. The model predicts an optimal distribution of resources which facilitates the spread of an infectious agent through the simulated population. The density of resource rich sites and the overall heterogeneity of the landscape are important factors contributing to this spread. The characteristics of this optimal distribution are similar to those of logged sections of forest adjacent to our study area.

Suggested Citation

  • Bonnell, Tyler R. & Sengupta, Raja R. & Chapman, Colin A. & Goldberg, Tony L., 2010. "An agent-based model of red colobus resources and disease dynamics implicates key resource sites as hot spots of disease transmission," Ecological Modelling, Elsevier, vol. 221(20), pages 2491-2500.
  • Handle: RePEc:eee:ecomod:v:221:y:2010:i:20:p:2491-2500
    DOI: 10.1016/j.ecolmodel.2010.07.020
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380010003753
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2010.07.020?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Daniel G. Brown & Rick Riolo & Derek T. Robinson & Michael North & William Rand, 2005. "Spatial process and data models: Toward integration of agent-based models and GIS," Journal of Geographical Systems, Springer, vol. 7(1), pages 25-47, October.
    2. Tamaini V. Snaith & Colin A. Chapman, 2008. "Red colobus monkeys display alternative behavioral responses to the costs of scramble competition," Behavioral Ecology, International Society for Behavioral Ecology, vol. 19(6), pages 1289-1296.
    3. Kate E. Jones & Nikkita G. Patel & Marc A. Levy & Adam Storeygard & Deborah Balk & John L. Gittleman & Peter Daszak, 2008. "Global trends in emerging infectious diseases," Nature, Nature, vol. 451(7181), pages 990-993, February.
    4. Linard, Catherine & Ponçon, Nicolas & Fontenille, Didier & Lambin, Eric F., 2009. "A multi-agent simulation to assess the risk of malaria re-emergence in southern France," Ecological Modelling, Elsevier, vol. 220(2), pages 160-174.
    5. Ling Bian, 2004. "A Conceptual Framework for an Individual-Based Spatially Explicit Epidemiological Model," Environment and Planning B, , vol. 31(3), pages 381-395, June.
    6. Kramer-Schadt, Stephanie & Revilla, Eloy & Wiegand, Thorsten & Grimm, Volker, 2007. "Patterns for parameters in simulation models," Ecological Modelling, Elsevier, vol. 204(3), pages 553-556.
    7. Nathan D. Wolfe & Claire Panosian Dunavan & Jared Diamond, 2007. "Origins of major human infectious diseases," Nature, Nature, vol. 447(7142), pages 279-283, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yoak, Andrew J. & Reece, John F. & Gehrt, Stanley D. & Hamilton, Ian M., 2016. "Optimizing free-roaming dog control programs using agent-based models," Ecological Modelling, Elsevier, vol. 341(C), pages 53-61.
    2. Dion, Elise & VanSchalkwyk, Louis & Lambin, Eric F., 2011. "The landscape epidemiology of foot-and-mouth disease in South Africa: A spatially explicit multi-agent simulation," Ecological Modelling, Elsevier, vol. 222(13), pages 2059-2072.
    3. Tardy, Olivia & Massé, Ariane & Pelletier, Fanie & Fortin, Daniel, 2018. "Interplay between contact risk, conspecific density, and landscape connectivity: An individual-based modeling framework," Ecological Modelling, Elsevier, vol. 373(C), pages 25-38.
    4. Nunn, Charles L. & Thrall, Peter H. & Kappeler, Peter M., 2014. "Shared resources and disease dynamics in spatially structured populations," Ecological Modelling, Elsevier, vol. 272(C), pages 198-207.
    5. Bonnell, Tyler R. & Ghai, Ria R. & Goldberg, Tony L. & Sengupta, Raja & Chapman, Colin A., 2016. "Spatial patterns of persistence for environmentally transmitted parasites: Effects of regional climate and local landscape," Ecological Modelling, Elsevier, vol. 338(C), pages 78-89.
    6. Perez, Liliana & Dragicevic, Suzana, 2012. "Landscape-level simulation of forest insect disturbance: Coupling swarm intelligent agents with GIS-based cellular automata model," Ecological Modelling, Elsevier, vol. 231(C), pages 53-64.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jian, Yun & Silvestri, Sonia & Belluco, Enrica & Saltarin, Andrea & Chillemi, Giovanni & Marani, Marco, 2014. "Environmental forcing and density-dependent controls of Culex pipiens abundance in a temperate climate (Northeastern Italy)," Ecological Modelling, Elsevier, vol. 272(C), pages 301-310.
    2. Degenne, P. & Lo Seen, D. & Parigot, D. & Forax, R. & Tran, A. & Ait Lahcen, A. & Curé, O. & Jeansoulin, R., 2009. "Design of a Domain Specific Language for modelling processes in landscapes," Ecological Modelling, Elsevier, vol. 220(24), pages 3527-3535.
    3. Samuel R. Friedman & Ashly E. Jordan & David C. Perlman & Georgios K. Nikolopoulos & Pedro Mateu-Gelabert, 2022. "Emerging Zoonotic Infections, Social Processes and Their Measurement and Enhanced Surveillance to Improve Zoonotic Epidemic Responses: A “Big Events” Perspective," IJERPH, MDPI, vol. 19(2), pages 1-11, January.
    4. Romain Espinosa & Damian Tago & Nicolas Treich, 2020. "Infectious Diseases and Meat Production," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 76(4), pages 1019-1044, August.
    5. Seth Blumberg & James O Lloyd-Smith, 2013. "Inference of R0 and Transmission Heterogeneity from the Size Distribution of Stuttering Chains," PLOS Computational Biology, Public Library of Science, vol. 9(5), pages 1-17, May.
    6. Paige, Sarah B. & Malavé, Carly & Mbabazi, Edith & Mayer, Jonathan & Goldberg, Tony L., 2015. "Uncovering zoonoses awareness in an emerging disease ‘hotspot’," Social Science & Medicine, Elsevier, vol. 129(C), pages 78-86.
    7. Renata L. Muylaert & David A. Wilkinson & Tigga Kingston & Paolo D’Odorico & Maria Cristina Rulli & Nikolas Galli & Reju Sam John & Phillip Alviola & David T. S. Hayman, 2023. "Using drivers and transmission pathways to identify SARS-like coronavirus spillover risk hotspots," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    8. Xinyuan Cui & Kewei Fan & Xianghui Liang & Wenjie Gong & Wu Chen & Biao He & Xiaoyuan Chen & Hai Wang & Xiao Wang & Ping Zhang & Xingbang Lu & Rujian Chen & Kaixiong Lin & Jiameng Liu & Junqiong Zhai , 2023. "Virus diversity, wildlife-domestic animal circulation and potential zoonotic viruses of small mammals, pangolins and zoo animals," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    9. Pueyo, Salvador, 2020. "Jevons' paradox and a tax on aviation to prevent the next pandemic," SocArXiv vb5q3, Center for Open Science.
    10. Nikolett Orosz & Tünde Tóthné Tóth & Gyöngyi Vargáné Gyuró & Zsoltné Tibor Nábrádi & Klára Hegedűsné Sorosi & Zsuzsa Nagy & Éva Rigó & Ádám Kaposi & Gabriella Gömöri & Cornelia Melinda Adi Santoso & A, 2022. "Comparison of Length of Hospital Stay for Community-Acquired Infections Due to Enteric Pathogens, Influenza Viruses and Multidrug-Resistant Bacteria: A Cross-Sectional Study in Hungary," IJERPH, MDPI, vol. 19(23), pages 1-16, November.
    11. Wei Zhong, 2017. "Simulating influenza pandemic dynamics with public risk communication and individual responsive behavior," Computational and Mathematical Organization Theory, Springer, vol. 23(4), pages 475-495, December.
    12. Marco A. Janssen & Lilian N. Alessa & C. Michael Barton & Sean Bergin & Allen Lee, 2008. "Towards a Community Framework for Agent-Based Modelling," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 11(2), pages 1-6.
    13. Ceddia, M.G. & Bardsley, N.O. & Goodwin, R. & Holloway, G.J. & Nocella, G. & Stasi, A., 2013. "A complex system perspective on the emergence and spread of infectious diseases: Integrating economic and ecological aspects," Ecological Economics, Elsevier, vol. 90(C), pages 124-131.
    14. Livia Marchetti & Valentina Cattivelli & Claudia Cocozza & Fabio Salbitano & Marco Marchetti, 2020. "Beyond Sustainability in Food Systems: Perspectives from Agroecology and Social Innovation," Sustainability, MDPI, vol. 12(18), pages 1-24, September.
    15. Bermudez, Bladimir Carrillo & Santos Branco, Danyelle Karine & Trujillo, Juan Carlos & de Lima, Joao Eustaquio, 2015. "Deforestation and Infant Health: Evidence from an Environmental Conservation Policy in Brazil," 2015 Conference, August 9-14, 2015, Milan, Italy 229064, International Association of Agricultural Economists.
    16. Maxwell B Joseph & William E Stutz & Pieter T J Johnson, 2016. "Multilevel Models for the Distribution of Hosts and Symbionts," PLOS ONE, Public Library of Science, vol. 11(11), pages 1-15, November.
    17. Laure Bonnaud & Nicolas Fortané, 2017. "Serge Morand and Muriel Figuié (eds), 2016, Emergence de maladies infectieuses. Risques et enjeux de société (The emergence of infectious diseases. Societal risks and stakes)," Review of Agricultural, Food and Environmental Studies, Springer, vol. 98(3), pages 225-228, December.
    18. Chen, Xiaowei & Chong, Wing Fung & Feng, Runhuan & Zhang, Linfeng, 2021. "Pandemic risk management: Resources contingency planning and allocation," Insurance: Mathematics and Economics, Elsevier, vol. 101(PB), pages 359-383.
    19. Lin Zhang & Jason Rohr & Ruina Cui & Yusi Xin & Lixia Han & Xiaona Yang & Shimin Gu & Yuanbao Du & Jing Liang & Xuyu Wang & Zhengjun Wu & Qin Hao & Xuan Liu, 2022. "Biological invasions facilitate zoonotic disease emergences," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    20. Ricardo Aguas & Neil M Ferguson, 2013. "Feature Selection Methods for Identifying Genetic Determinants of Host Species in RNA Viruses," PLOS Computational Biology, Public Library of Science, vol. 9(10), pages 1-10, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:221:y:2010:i:20:p:2491-2500. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.