IDEAS home Printed from https://ideas.repec.org/a/eee/ecolec/v163y2019icp70-76.html
   My bibliography  Save this article

Carbon payments for extended rotations in forest plantations: Conflicting insights from a theoretical model

Author

Listed:
  • West, Thales A.P.
  • Wilson, Chris
  • Vrachioli, Maria
  • Grogan, Kelly A.

Abstract

This study adapts the Faustmann model (1849) to include the effects of carbon-based payments for environmental services on the optimal rotation length of forest plantations. We assume payments occur at the end of the harvesting cycle and are based on the additional average carbon stock over the rotation length relative to an optimal management scenario without carbon incentives. We present numerical applications of our model based on the four most planted tree species in the world: Eucalyptus sp., Acacia sp., Pinus sp. and Tectona sp. Simulations were performed to quantify the impact of different payment levels (USD Mg CO2−1) on optimal rotation lengths and carbon stocks. We find diminishing sequestration returns to increasing carbon payments. Overall, our results suggest that targeting plantations with longer rotations, associated with slow-growing species, is a more cost-effective strategy to retain additional forest carbon stored (USD Mg CO2−1). However, such a strategy results in lower proportional increases in carbon stocks (Mg CO2 ha−1) compared to faster-growing species, which benefit the most from the carbon incentives. As a result, increasing payments for additional carbon stored could change the choice of which tree species to produce and ironically promote plantations with lower total carbon stocks.

Suggested Citation

  • West, Thales A.P. & Wilson, Chris & Vrachioli, Maria & Grogan, Kelly A., 2019. "Carbon payments for extended rotations in forest plantations: Conflicting insights from a theoretical model," Ecological Economics, Elsevier, vol. 163(C), pages 70-76.
  • Handle: RePEc:eee:ecolec:v:163:y:2019:i:c:p:70-76
    DOI: 10.1016/j.ecolecon.2019.05.010
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0921800918306268
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolecon.2019.05.010?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Koskela, Erkki & Ollikainen, Markku, 2001. "Forest Taxation and Rotation Age under Private Amenity Valuation: New Results," Journal of Environmental Economics and Management, Elsevier, vol. 42(3), pages 374-384, November.
    2. Köthke, Margret & Dieter, Matthias, 2010. "Effects of carbon sequestration rewards on forest management--An empirical application of adjusted Faustmann Formulae," Forest Policy and Economics, Elsevier, vol. 12(8), pages 589-597, October.
    3. Caparros, Alejandro & Jacquemont, Frederic, 2003. "Conflicts between biodiversity and carbon sequestration programs: economic and legal implications," Ecological Economics, Elsevier, vol. 46(1), pages 143-157, August.
    4. World Bank & Ecofys & Vivid Economics, "undated". "State and Trends of Carbon Pricing 2017," World Bank Publications - Reports 28510, The World Bank Group.
    5. Palmer, Charles, 2011. "Property rights and liability for deforestation under REDD+: Implications for 'permanence' in policy design," Ecological Economics, Elsevier, vol. 70(4), pages 571-576, February.
    6. Hartman, Richard, 1976. "The Harvesting Decision When a Standing Forest Has Value," Economic Inquiry, Western Economic Association International, vol. 14(1), pages 52-58, March.
    7. Andrew Stainback, G. & Alavalapati, Janaki R.R., 2002. "Economic analysis of slash pine forest carbon sequestration in the southern U. S," Journal of Forest Economics, Elsevier, vol. 8(2), pages 105-117.
    8. Olschewski, Roland & Benítez, Pablo C., 2010. "Optimizing joint production of timber and carbon sequestration of afforestation projects," Journal of Forest Economics, Elsevier, vol. 16(1), pages 1-10, January.
    9. Huang, Ching-Hsun & Kronrad, Gary D., 2001. "The cost of sequestering carbon on private forest lands," Forest Policy and Economics, Elsevier, vol. 2(2), pages 133-142, June.
    10. Assmuth, Aino & Tahvonen, Olli, 2018. "Optimal carbon storage in even- and uneven-aged forestry," Forest Policy and Economics, Elsevier, vol. 87(C), pages 93-100.
    11. G. Cornelis van Kooten & Clark S. Binkley & Gregg Delcourt, 1995. "Effect of Carbon Taxes and Subsidies on Optimal Forest Rotation Age and Supply of Carbon Services," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 77(2), pages 365-374.
    12. Karl G. Löfgren, 1983. "The Faustmann-Ohlin Theorem: A Historical Note," History of Political Economy, Duke University Press, vol. 15(2), pages 261-264, Summer.
    13. Nicholas Stern, 2008. "The Economics of Climate Change," American Economic Review, American Economic Association, vol. 98(2), pages 1-37, May.
    14. Guitart, A. Bussoni & Rodriguez, L.C. Estraviz, 2010. "Private valuation of carbon sequestration in forest plantations," Ecological Economics, Elsevier, vol. 69(3), pages 451-458, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. West, Thales A.P. & Monge, Juan J. & Dowling, Les J. & Wakelin, Steve J. & Gibbs, Holly K., 2020. "Promotion of afforestation in New Zealand’s marginal agricultural lands through payments for environmental services," Ecosystem Services, Elsevier, vol. 46(C).
    2. Frank Jensen & Rasmus Nielsen & Henrik Meilby, 2023. "Regulation of aquaculture production," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 25(2), pages 161-204, April.
    3. Mengistie Kindu & Logan Robert Bingham & José G. Borges & Susete Marques & Olha Nahorna & Jeannette Eggers & Thomas Knoke, 2022. "Opportunity Costs of In Situ Carbon Storage Derived by Multiple-Objective Stand-Level Optimization—Results from Case Studies in Portugal and Germany," Land, MDPI, vol. 11(11), pages 1-12, November.
    4. Augustynczik, Andrey Lessa Derci & Gutsch, Martin & Basile, Marco & Suckow, Felicitas & Lasch, Petra & Yousefpour, Rasoul & Hanewinkel, Marc, 2020. "Socially optimal forest management and biodiversity conservation in temperate forests under climate change," Ecological Economics, Elsevier, vol. 169(C).
    5. Hou, Guolong & Delang, Claudio O. & Lu, Xixi & Olschewski, Roland, 2020. "Optimizing rotation periods of forest plantations: The effects of carbon accounting regimes," Forest Policy and Economics, Elsevier, vol. 118(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Köthke, Margret & Dieter, Matthias, 2010. "Effects of carbon sequestration rewards on forest management--An empirical application of adjusted Faustmann Formulae," Forest Policy and Economics, Elsevier, vol. 12(8), pages 589-597, October.
    2. Couture, Stéphane & Reynaud, Arnaud, 2011. "Forest management under fire risk when forest carbon sequestration has value," Ecological Economics, Elsevier, vol. 70(11), pages 2002-2011, September.
    3. Susaeta, Andres & Chang, Sun Joseph & Carter, Douglas R. & Lal, Pankaj, 2014. "Economics of carbon sequestration under fluctuating economic environment, forest management and technological changes: An application to forest stands in the southern United States," Journal of Forest Economics, Elsevier, vol. 20(1), pages 47-64.
    4. Parajuli, Rajan & Chang, Sun Joseph, 2012. "Carbon sequestration and uneven-aged management of loblolly pine stands in the Southern USA: A joint optimization approach," Forest Policy and Economics, Elsevier, vol. 22(C), pages 65-71.
    5. Indrajaya, Yonky & van der Werf, Edwin & Weikard, Hans-Peter & Mohren, Frits & van Ierland, Ekko C., 2016. "The potential of REDD+ for carbon sequestration in tropical forests: Supply curves for carbon storage for Kalimantan, Indonesia," Forest Policy and Economics, Elsevier, vol. 71(C), pages 1-10.
    6. Susaeta, Andres & Adams, Damian C. & Gonzalez-Benecke, Carlos, 2017. "Economic vulnerability of southern US slash pine forests to climate change," Journal of Forest Economics, Elsevier, vol. 28(C), pages 18-32.
    7. Newman, D.H., 2002. "Forestry's golden rule and the development of the optimal forest rotation literature," Journal of Forest Economics, Elsevier, vol. 8(1), pages 5-27.
    8. Yu, Jinna & Yao, Shunbo & Zhang, Bisheng, 2014. "Designing afforestation subsidies that account for the benefits of carbon sequestration: A case study using data from China's Loess Plateau," Journal of Forest Economics, Elsevier, vol. 20(1), pages 65-76.
    9. Jin Zhang & Rong-Gang Cong & Berit Hasler, 2018. "Sustainable Management of Oleaginous Trees as a Source for Renewable Energy Supply and Climate Change Mitigation: A Case Study in China," Energies, MDPI, vol. 11(5), pages 1-23, May.
    10. Dwivedi, Puneet & Bailis, Robert & Stainback, Andrew & Carter, Douglas R., 2012. "Impact of payments for carbon sequestered in wood products and avoided carbon emissions on the profitability of NIPF landowners in the US South," Ecological Economics, Elsevier, vol. 78(C), pages 63-69.
    11. Miettinen, Jenni & Ollikainen, Markku & Nieminen, Tiina M. & Ukonmaanaho, Liisa & Laurén, Ari & Hynynen, Jari & Lehtonen, Mika & Valsta, Lauri, 2014. "Whole-tree harvesting with stump removal versus stem-only harvesting in peatlands when water quality, biodiversity conservation and climate change mitigation matter," Forest Policy and Economics, Elsevier, vol. 47(C), pages 25-35.
    12. Loisel, Patrice, 2020. "Under the risk of destructive event, are there differences between timber income based and carbon sequestration based silviculture?," Forest Policy and Economics, Elsevier, vol. 120(C).
    13. Andrew Stainback, G. & Alavalapati, Janaki R.R., 2002. "Economic analysis of slash pine forest carbon sequestration in the southern U. S," Journal of Forest Economics, Elsevier, vol. 8(2), pages 105-117.
    14. Yonky Indrajaya & Edwin van der Werf & Ekko van Ierland & Frits Mohren, 2014. "Optimal Forest Management when Logging Damages and Costs Differ between Logging Practices," CESifo Working Paper Series 4606, CESifo.
    15. Asante, Patrick & Armstrong, Glen W., 2012. "Optimal forest harvest age considering carbon sequestration in multiple carbon pools: A comparative statics analysis," Journal of Forest Economics, Elsevier, vol. 18(2), pages 145-156.
    16. Frank Jensen & Rasmus Nielsen & Henrik Meilby, 2023. "Regulation of aquaculture production," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 25(2), pages 161-204, April.
    17. Tatoutchoup, Francis Didier, 2016. "Optimal rate of paper recycling," Forest Policy and Economics, Elsevier, vol. 73(C), pages 264-269.
    18. Nguyen, Trung Thanh & Nghiem, Nhung, 2016. "Optimal forest rotation for carbon sequestration and biodiversity conservation by farm income levels," Forest Policy and Economics, Elsevier, vol. 73(C), pages 185-194.
    19. Rørstad, Per Kristian, 2022. "Payment for CO2 sequestration affects the Faustmann rotation period in Norway more than albedo payment does," Ecological Economics, Elsevier, vol. 199(C).
    20. Price, Colin & Willis, Rob, 2011. "The multiple effects of carbon values on optimal rotation," Journal of Forest Economics, Elsevier, vol. 17(3), pages 298-306, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecolec:v:163:y:2019:i:c:p:70-76. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ecolecon .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.