IDEAS home Printed from https://ideas.repec.org/a/eee/dyncon/v52y2015icpa11-a23.html
   My bibliography  Save this article

Emergence of a core-periphery structure in a simple dynamic model of the interbank market

Author

Listed:
  • Lux, Thomas

Abstract

This paper studies a simple dynamic model of interbank credit relationships. Starting from a given balance sheet structure of a banking system with a realistic distribution of bank sizes, the necessity of establishing interbank credit connections emerges from idiosyncratic liquidity shocks. Banks initially choose potential trading partners randomly, but over time form preferential relationships via an elementary reinforcement learning algorithm. As it turns out, the dynamic evolution of this system displays a formation of a core-periphery structure with mainly the largest banks assuming the roles of money center banks mediating between the liquidity needs of many smaller banks. Statistical analysis shows that this evolving interbank market shares the majority of the salient characteristics of interbank credit relationship that have been put forth in recent literature. Preferential interest rates for borrowers with strong attachment to a lender may prevent the system from becoming extortionary and guarantee the survival of the small peripherical banks.

Suggested Citation

  • Lux, Thomas, 2015. "Emergence of a core-periphery structure in a simple dynamic model of the interbank market," Journal of Economic Dynamics and Control, Elsevier, vol. 52(C), pages 11-23.
  • Handle: RePEc:eee:dyncon:v:52:y:2015:i:c:p:a11-a23
    DOI: 10.1016/j.jedc.2014.09.038
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0165188914002607
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jedc.2014.09.038?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hajime Inaoka & Takuto Ninomiya & Ken Taniguchi & Tokiko Shimizu & Hideki Takayasu, 2004. "Fractal Network derived from banking transaction -- An analysis of network structures formed by financial institutions --," Bank of Japan Working Paper Series 04-E-4, Bank of Japan.
    2. Soramäki, Kimmo & Bech, Morten L. & Arnold, Jeffrey & Glass, Robert J. & Beyeler, Walter E., 2007. "The topology of interbank payment flows," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 379(1), pages 317-333.
    3. Daniel Fricke & Thomas Lux, 2015. "On the distribution of links in the interbank network: evidence from the e-MID overnight money market," Empirical Economics, Springer, vol. 49(4), pages 1463-1495, December.
    4. Freixas, Xavier & Parigi, Bruno M & Rochet, Jean-Charles, 2000. "Systemic Risk, Interbank Relations, and Liquidity Provision by the Central Bank," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 32(3), pages 611-638, August.
    5. Franziska Bremus & Claudia M. Buch & Katheryn N. Russ & Monika Schnitzer, 2018. "Big Banks and Macroeconomic Outcomes: Theory and Cross‐Country Evidence of Granularity," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 50(8), pages 1785-1825, December.
    6. Grzegorz Haᴌaj & Christoffer Kok, 2015. "Modelling the emergence of the interbank networks," Quantitative Finance, Taylor & Francis Journals, vol. 15(4), pages 653-671, April.
    7. Craig, Ben & von Peter, Goetz, 2014. "Interbank tiering and money center banks," Journal of Financial Intermediation, Elsevier, vol. 23(3), pages 322-347.
    8. Kartik Anand & Ben Craig & Goetz von Peter, 2015. "Filling in the blanks: network structure and interbank contagion," Quantitative Finance, Taylor & Francis Journals, vol. 15(4), pages 625-636, April.
    9. Iori, Giulia & Mantegna, Rosario N. & Marotta, Luca & Miccichè, Salvatore & Porter, James & Tumminello, Michele, 2015. "Networked relationships in the e-MID interbank market: A trading model with memory," Journal of Economic Dynamics and Control, Elsevier, vol. 50(C), pages 98-116.
    10. Blasques, Francisco & Bräuning, Falk & Lelyveld, Iman van, 2018. "A dynamic network model of the unsecured interbank lending market," Journal of Economic Dynamics and Control, Elsevier, vol. 90(C), pages 310-342.
    11. Hubert P. Janicki & Edward Simpson Prescott, 2006. "Changes in the size distribution of U.S. banks: 1960-2005," Economic Quarterly, Federal Reserve Bank of Richmond, vol. 92(Fall), pages 291-316.
    12. Huberto M. Ennis, 2001. "On the size distribution of banks," Economic Quarterly, Federal Reserve Bank of Richmond, issue Fall, pages 1-25.
    13. Cocco, João F. & Gomes, Francisco J. & Martins, Nuno C., 2009. "Lending relationships in the interbank market," Journal of Financial Intermediation, Elsevier, vol. 18(1), pages 24-48, January.
    14. Michael Boss & Helmut Elsinger & Martin Summer & Stefan Thurner, 2004. "Network topology of the interbank market," Quantitative Finance, Taylor & Francis Journals, vol. 4(6), pages 677-684.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lux, Thomas, 2014. "Emergence of a Core-Periphery Structure in a Simple Dynamic Model of the Interbank Market," FinMaP-Working Papers 3, Collaborative EU Project FinMaP - Financial Distortions and Macroeconomic Performance: Expectations, Constraints and Interaction of Agents.
    2. Lux, Thomas, 2014. "Emergence of a core-periphery structure in a simple dynamic model of the interbank market," Kiel Working Papers 1917, Kiel Institute for the World Economy (IfW Kiel).
    3. Paul Glasserman & Peyton Young, 2015. "Contagion in Financial Networks," Economics Series Working Papers 764, University of Oxford, Department of Economics.
    4. Andre R. Neveu, 2018. "A survey of network-based analysis and systemic risk measurement," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 13(2), pages 241-281, July.
    5. Hüser, Anne-Caroline, 2016. "Too interconnected to fail: A survey of the Interbank Networks literature," SAFE Working Paper Series 91, Leibniz Institute for Financial Research SAFE, revised 2016.
    6. Paul Glasserman & H. Peyton Young, 2015. "Contagion in Financial Markets," Working Papers 15-21, Office of Financial Research, US Department of the Treasury.
    7. Accominotti, Olivier & Lucena-Piquero, Delio & Ugolini, Stefano, 2023. "Intermediaries’ substitutability and financial network resilience: A hyperstructure approach," Journal of Economic Dynamics and Control, Elsevier, vol. 153(C).
    8. Dietmar Maringer & Ben Craig & Sandra Paterlini, 2022. "Constructing banking networks under decreasing costs of link formation," Computational Management Science, Springer, vol. 19(1), pages 41-64, January.
    9. Morteza Alaeddini & Philippe Madiès & Paul J. Reaidy & Julie Dugdale, 2023. "Interbank money market concerns and actors’ strategies—A systematic review of 21st century literature," Journal of Economic Surveys, Wiley Blackwell, vol. 37(2), pages 573-654, April.
    10. Sadamori Kojaku & Giulio Cimini & Guido Caldarelli & Naoki Masuda, 2018. "Structural changes in the interbank market across the financial crisis from multiple core-periphery analysis," Papers 1802.05139, arXiv.org.
    11. Pablo Rovira Kaltwasser & Alessandro Spelta, 2019. "Identifying systemically important financial institutions: a network approach," Computational Management Science, Springer, vol. 16(1), pages 155-185, February.
    12. Lux, Thomas, 2016. "Network effects and systemic risk in the banking sector," FinMaP-Working Papers 62, Collaborative EU Project FinMaP - Financial Distortions and Macroeconomic Performance: Expectations, Constraints and Interaction of Agents.
    13. Liu, Anqi & Paddrik, Mark & Yang, Steve Y. & Zhang, Xingjia, 2020. "Interbank contagion: An agent-based model approach to endogenously formed networks," Journal of Banking & Finance, Elsevier, vol. 112(C).
    14. Karl Finger & Daniel Fricke & Thomas Lux, 2013. "Network analysis of the e-MID overnight money market: the informational value of different aggregation levels for intrinsic dynamic processes," Computational Management Science, Springer, vol. 10(2), pages 187-211, June.
    15. Rainone, Edoardo, 2020. "The network nature of over-the-counter interest rates," Journal of Financial Markets, Elsevier, vol. 47(C).
    16. González-Avella, Juan Carlos & de Quadros, Vanessa Hoffmann & Iglesias, José Roberto, 2016. "Network topology and interbank credit risk," Chaos, Solitons & Fractals, Elsevier, vol. 88(C), pages 235-243.
    17. Marco Bardoscia & Paolo Barucca & Stefano Battiston & Fabio Caccioli & Giulio Cimini & Diego Garlaschelli & Fabio Saracco & Tiziano Squartini & Guido Caldarelli, 2021. "The Physics of Financial Networks," Papers 2103.05623, arXiv.org.
    18. Ben R. Craig & Dietmar Maringer & Sandra Paterlini, 2019. "Recreating Banking Networks under Decreasing Fixed Costs," Working Papers 19-21, Federal Reserve Bank of Cleveland.
    19. Sam Langfield & Kimmo Soramäki, 2016. "Interbank Exposure Networks," Computational Economics, Springer;Society for Computational Economics, vol. 47(1), pages 3-17, January.
    20. Marnix Van Soom & Milan Van Den Heuvel & Jan Ryckebusch & Koen Schoors, 2019. "Loan Maturity Aggregation In Interbank Lending Networks Obscures Mesoscale Structure And Economic Functions," Working Papers of Faculty of Economics and Business Administration, Ghent University, Belgium 19/952, Ghent University, Faculty of Economics and Business Administration.

    More about this item

    Keywords

    Liquidity; Interbank market; Network formation;
    All these keywords.

    JEL classification:

    • D85 - Microeconomics - - Information, Knowledge, and Uncertainty - - - Network Formation
    • G21 - Financial Economics - - Financial Institutions and Services - - - Banks; Other Depository Institutions; Micro Finance Institutions; Mortgages
    • D83 - Microeconomics - - Information, Knowledge, and Uncertainty - - - Search; Learning; Information and Knowledge; Communication; Belief; Unawareness

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:dyncon:v:52:y:2015:i:c:p:a11-a23. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/jedc .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.