Advanced Search
MyIDEAS: Login to save this article or follow this journal

Analysis of presence-only data via semi-supervised learning approaches

Contents:

Author Info

  • Wang, Junhui
  • Fang, Yixin
Registered author(s):

    Abstract

    Presence-only data occur in a classification, which consist of a sample of observations from the presence class and a large number of background observations with unknown presence/absence. Since absence data are generally unavailable, conventional semi-supervised learning approaches are no longer appropriate as they tend to degenerate and assign all observations to the presence class. In this article, we propose a generalized class balance constraint, which can be equipped with semi-supervised learning approaches to prevent them from degeneration. Furthermore, to circumvent the difficulty of model tuning with presence-only data, a selection criterion based on classification stability is developed, which measures the robustness of any given classification algorithm against the sampling randomness. The effectiveness of the proposed approach is demonstrated through a variety of simulated examples, along with an application to gene function prediction.

    Download Info

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
    File URL: http://www.sciencedirect.com/science/article/pii/S016794731200357X
    Download Restriction: Full text for ScienceDirect subscribers only.

    As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

    Bibliographic Info

    Article provided by Elsevier in its journal Computational Statistics & Data Analysis.

    Volume (Year): 59 (2013)
    Issue (Month): C ()
    Pages: 134-143

    as in new window
    Handle: RePEc:eee:csdana:v:59:y:2013:i:c:p:134-143

    Contact details of provider:
    Web page: http://www.elsevier.com/locate/csda

    Related research

    Keywords: Cross validation; Functional genomics; Stability; Support vector machine; Tuning;

    References

    No references listed on IDEAS
    You can help add them by filling out this form.

    Citations

    Lists

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    Statistics

    Access and download statistics

    Corrections

    When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:59:y:2013:i:c:p:134-143. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Zhang, Lei).

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.