IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v20y1995i4p387-407.html
   My bibliography  Save this article

Sensitivity analysis of model output. Performance of the iterated fractional factorial design method

Author

Listed:
  • Saltelli, A.
  • Andres, T. H.
  • Homma, T.

Abstract

No abstract is available for this item.

Suggested Citation

  • Saltelli, A. & Andres, T. H. & Homma, T., 1995. "Sensitivity analysis of model output. Performance of the iterated fractional factorial design method," Computational Statistics & Data Analysis, Elsevier, vol. 20(4), pages 387-407, October.
  • Handle: RePEc:eee:csdana:v:20:y:1995:i:4:p:387-407
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/0167-9473(95)92843-M
    Download Restriction: Full text for ScienceDirect subscribers only.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Saltelli, A. & Andres, T. H. & Homma, T., 1993. "Sensitivity analysis of model output : An investigation of new techniques," Computational Statistics & Data Analysis, Elsevier, vol. 15(2), pages 211-238, February.
    2. Saltelli, A. & Homma, T., 1992. "Sensitivity analysis for model output : Performance of black box techniques on three international benchmark exercises," Computational Statistics & Data Analysis, Elsevier, vol. 13(1), pages 73-94, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kleijnen, J.P.C., 1997. "Experimental Design for Sensitivity Analysis, Optimization and Validation of Simulation Models," Discussion Paper 1997-52, Tilburg University, Center for Economic Research.
    2. Kleijnen, Jack P. C. & Sargent, Robert G., 2000. "A methodology for fitting and validating metamodels in simulation," European Journal of Operational Research, Elsevier, vol. 120(1), pages 14-29, January.
    3. Xu, Chonggang & Gertner, George Zdzislaw, 2008. "Uncertainty and sensitivity analysis for models with correlated parameters," Reliability Engineering and System Safety, Elsevier, vol. 93(10), pages 1563-1573.
    4. Xu, Chonggang & Gertner, George Zdzislaw, 2008. "A general first-order global sensitivity analysis method," Reliability Engineering and System Safety, Elsevier, vol. 93(7), pages 1060-1071.
    5. Xu, Chonggang & Gertner, George, 2011. "Understanding and comparisons of different sampling approaches for the Fourier Amplitudes Sensitivity Test (FAST)," Computational Statistics & Data Analysis, Elsevier, vol. 55(1), pages 184-198, January.
    6. Xu, C. & Gertner, G., 2007. "Extending a global sensitivity analysis technique to models with correlated parameters," Computational Statistics & Data Analysis, Elsevier, vol. 51(12), pages 5579-5590, August.
    7. Blatman, Géraud & Sudret, Bruno, 2010. "Efficient computation of global sensitivity indices using sparse polynomial chaos expansions," Reliability Engineering and System Safety, Elsevier, vol. 95(11), pages 1216-1229.
    8. Ramkishore Singh & Dharam Buddhi & Samar Thapa & Chander Prakash & Rajesh Singh & Atul Sharma & Shane Sheoran & Kuldeep Kumar Saxena, 2022. "Sensitivity Analysis for Decisive Design Parameters for Energy and Indoor Visual Performances of a Glazed Façade Office Building," Sustainability, MDPI, vol. 14(21), pages 1-27, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kleijnen, J.P.C., 1995. "Sensitivity analysis and related analysis : A survey of statistical techniques," Other publications TiSEM bcf947da-25e3-431d-a1f6-6, Tilburg University, School of Economics and Management.
    2. Saltelli, Andrea & Bolado, Ricardo, 1998. "An alternative way to compute Fourier amplitude sensitivity test (FAST)," Computational Statistics & Data Analysis, Elsevier, vol. 26(4), pages 445-460, February.
    3. Kimberly M. Thompson, 2002. "Variability and Uncertainty Meet Risk Management and Risk Communication," Risk Analysis, John Wiley & Sons, vol. 22(3), pages 647-654, June.
    4. J. C. Helton & F. J. Davis, 2002. "Illustration of Sampling‐Based Methods for Uncertainty and Sensitivity Analysis," Risk Analysis, John Wiley & Sons, vol. 22(3), pages 591-622, June.
    5. Becker William & Paruolo Paolo & Saltelli Andrea, 2021. "Variable Selection in Regression Models Using Global Sensitivity Analysis," Journal of Time Series Econometrics, De Gruyter, vol. 13(2), pages 187-233, July.
    6. Puppo, L. & Pedroni, N. & Maio, F. Di & Bersano, A. & Bertani, C. & Zio, E., 2021. "A Framework based on Finite Mixture Models and Adaptive Kriging for Characterizing Non-Smooth and Multimodal Failure Regions in a Nuclear Passive Safety System," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    7. Chen, Xin & Molina-Cristóbal, Arturo & Guenov, Marin D. & Riaz, Atif, 2019. "Efficient method for variance-based sensitivity analysis," Reliability Engineering and System Safety, Elsevier, vol. 181(C), pages 97-115.
    8. Neda Vesselinova & Boian S Alexandrov & Michael E Wall, 2016. "Dynamical Model of Drug Accumulation in Bacteria: Sensitivity Analysis and Experimentally Testable Predictions," PLOS ONE, Public Library of Science, vol. 11(11), pages 1-20, November.
    9. Qiao Yu & Brian Yueshuai He & Jiaqi Ma & Yifang Zhu, 2023. "California’s zero-emission vehicle adoption brings air quality benefits yet equity gaps persist," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    10. Andrea Saltelli & Stefano Tarantola & Karen Chad, 1998. "Presenting Results from Model Based Studies to Decision‐Makers: Can Sensitivity Analysis Be a Defogging Agent?," Risk Analysis, John Wiley & Sons, vol. 18(6), pages 799-803, December.
    11. Sinan Xiao & Zhenzhou Lu & Pan Wang, 2018. "Multivariate Global Sensitivity Analysis Based on Distance Components Decomposition," Risk Analysis, John Wiley & Sons, vol. 38(12), pages 2703-2721, December.
    12. Yang Yang & Haiyan Liu, 2022. "Sensitivity analysis of disease-information coupling propagation dynamics model parameters," PLOS ONE, Public Library of Science, vol. 17(3), pages 1-15, March.
    13. Steiger, David M. & Sharda, Ramesh, 1996. "Analyzing mathematical models with inductive learning networks," European Journal of Operational Research, Elsevier, vol. 93(2), pages 387-401, September.
    14. Helton, Jon C., 2011. "Quantification of margins and uncertainties: Conceptual and computational basis," Reliability Engineering and System Safety, Elsevier, vol. 96(9), pages 976-1013.
    15. Cariboni, J. & Gatelli, D. & Liska, R. & Saltelli, A., 2007. "The role of sensitivity analysis in ecological modelling," Ecological Modelling, Elsevier, vol. 203(1), pages 167-182.
    16. Sallaberry, C.J. & Helton, J.C. & Hora, S.C., 2008. "Extension of Latin hypercube samples with correlated variables," Reliability Engineering and System Safety, Elsevier, vol. 93(7), pages 1047-1059.
    17. Storlie, Curtis B. & Helton, Jon C., 2008. "Multiple predictor smoothing methods for sensitivity analysis: Description of techniques," Reliability Engineering and System Safety, Elsevier, vol. 93(1), pages 28-54.
    18. Xiao, Sinan & Lu, Zhenzhou & Wang, Pan, 2018. "Multivariate global sensitivity analysis for dynamic models based on wavelet analysis," Reliability Engineering and System Safety, Elsevier, vol. 170(C), pages 20-30.
    19. Vepsäläinen, Jari & Otto, Kevin & Lajunen, Antti & Tammi, Kari, 2019. "Computationally efficient model for energy demand prediction of electric city bus in varying operating conditions," Energy, Elsevier, vol. 169(C), pages 433-443.
    20. Helton, J.C. & Johnson, J.D. & Sallaberry, C.J. & Storlie, C.B., 2006. "Survey of sampling-based methods for uncertainty and sensitivity analysis," Reliability Engineering and System Safety, Elsevier, vol. 91(10), pages 1175-1209.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:20:y:1995:i:4:p:387-407. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.