IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v132y2019icp212-224.html
   My bibliography  Save this article

Prediction with a flexible finite mixture-of-regressions

Author

Listed:
  • Ahonen, Ilmari
  • Nevalainen, Jaakko
  • Larocque, Denis

Abstract

Finite mixture regression (FMR) is widely used for modeling data that originate from heterogeneous populations. In these settings, FMR can offer increased predictive power compared to more traditional one-class models. However, existing FMR methods rely heavily on mixtures of linear models, where the linear predictor must be given as an input. A flexible FMR model is presented using a combination of the random forest learner and a penalized linear FMR. The performance of the new method is assessed by predictive log-likelihood in extensive simulation studies. The method is shown to achieve equal performance with the existing FMR methods when the true regression functions are in fact linear and superior performance in cases where at least one of the regression functions is nonlinear. The method can handle a large number of covariates, and its predictive ability is not greatly affected by surplus variables.

Suggested Citation

  • Ahonen, Ilmari & Nevalainen, Jaakko & Larocque, Denis, 2019. "Prediction with a flexible finite mixture-of-regressions," Computational Statistics & Data Analysis, Elsevier, vol. 132(C), pages 212-224.
  • Handle: RePEc:eee:csdana:v:132:y:2019:i:c:p:212-224
    DOI: 10.1016/j.csda.2018.01.012
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167947318300136
    Download Restriction: Full text for ScienceDirect subscribers only.

    File URL: https://libkey.io/10.1016/j.csda.2018.01.012?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. De Veaux, Richard D., 1989. "Mixtures of linear regressions," Computational Statistics & Data Analysis, Elsevier, vol. 8(3), pages 227-245, November.
    2. Bouveyron, Charles & Brunet-Saumard, Camille, 2014. "Model-based clustering of high-dimensional data: A review," Computational Statistics & Data Analysis, Elsevier, vol. 71(C), pages 52-78.
    3. Friedman, Jerome H. & Hastie, Trevor & Tibshirani, Rob, 2010. "Regularization Paths for Generalized Linear Models via Coordinate Descent," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 33(i01).
    4. Leisch, Friedrich, 2004. "FlexMix: A General Framework for Finite Mixture Models and Latent Class Regression in R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 11(i08).
    5. Galimberti, Giuliano & Montanari, Angela & Viroli, Cinzia, 2009. "Penalized factor mixture analysis for variable selection in clustered data," Computational Statistics & Data Analysis, Elsevier, vol. 53(12), pages 4301-4310, October.
    6. Mian Huang & Runze Li & Shaoli Wang, 2013. "Nonparametric Mixture of Regression Models," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 108(503), pages 929-941, September.
    7. Khalili, Abbas & Chen, Jiahua, 2007. "Variable Selection in Finite Mixture of Regression Models," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 1025-1038, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xavier Bry & Ndèye Niang & Thomas Verron & Stéphanie Bougeard, 2023. "Clusterwise elastic-net regression based on a combined information criterion," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 17(1), pages 75-107, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ciarleglio, Adam & Todd Ogden, R., 2016. "Wavelet-based scalar-on-function finite mixture regression models," Computational Statistics & Data Analysis, Elsevier, vol. 93(C), pages 86-96.
    2. Paul D. McNicholas, 2016. "Model-Based Clustering," Journal of Classification, Springer;The Classification Society, vol. 33(3), pages 331-373, October.
    3. Sphiwe B. Skhosana & Salomon M. Millard & Frans H. J. Kanfer, 2023. "A Novel EM-Type Algorithm to Estimate Semi-Parametric Mixtures of Partially Linear Models," Mathematics, MDPI, vol. 11(5), pages 1-20, February.
    4. Abbas Khalili & Farhad Shokoohi & Masoud Asgharian & Shili Lin, 2023. "Sparse estimation in semiparametric finite mixture of varying coefficient regression models," Biometrics, The International Biometric Society, vol. 79(4), pages 3445-3457, December.
    5. Semhar Michael & Volodymyr Melnykov, 2016. "Finite Mixture Modeling of Gaussian Regression Time Series with Application to Dendrochronology," Journal of Classification, Springer;The Classification Society, vol. 33(3), pages 412-441, October.
    6. Qingguo Tang & R. J. Karunamuni, 2018. "Robust variable selection for finite mixture regression models," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 70(3), pages 489-521, June.
    7. Jennifer S. K. Chan & S. T. Boris Choy & Udi Makov & Ariel Shamir & Vered Shapovalov, 2022. "Variable Selection Algorithm for a Mixture of Poisson Regression for Handling Overdispersion in Claims Frequency Modeling Using Telematics Car Driving Data," Risks, MDPI, vol. 10(4), pages 1-10, April.
    8. Lloyd-Jones, Luke R. & Nguyen, Hien D. & McLachlan, Geoffrey J., 2018. "A globally convergent algorithm for lasso-penalized mixture of linear regression models," Computational Statistics & Data Analysis, Elsevier, vol. 119(C), pages 19-38.
    9. Yu, Jing & Nummi, Tapio & Pan, Jianxin, 2022. "Mixture regression for longitudinal data based on joint mean–covariance model," Journal of Multivariate Analysis, Elsevier, vol. 190(C).
    10. Nicolas Städler & Peter Bühlmann & Sara Geer, 2010. "ℓ 1 -penalization for mixture regression models," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 19(2), pages 209-256, August.
    11. Xiaotian Zhu & David R. Hunter, 2019. "Clustering via finite nonparametric ICA mixture models," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 13(1), pages 65-87, March.
    12. Utkarsh J. Dang & Antonio Punzo & Paul D. McNicholas & Salvatore Ingrassia & Ryan P. Browne, 2017. "Multivariate Response and Parsimony for Gaussian Cluster-Weighted Models," Journal of Classification, Springer;The Classification Society, vol. 34(1), pages 4-34, April.
    13. Dunstan, Piers K. & Foster, Scott D. & Darnell, Ross, 2011. "Model based grouping of species across environmental gradients," Ecological Modelling, Elsevier, vol. 222(4), pages 955-963.
    14. Xavier Bry & Ndèye Niang & Thomas Verron & Stéphanie Bougeard, 2023. "Clusterwise elastic-net regression based on a combined information criterion," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 17(1), pages 75-107, March.
    15. Marco Berrettini & Giuliano Galimberti & Saverio Ranciati, 2023. "Semiparametric finite mixture of regression models with Bayesian P-splines," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 17(3), pages 745-775, September.
    16. Hui Ye & Anthony Bellotti, 2019. "Modelling Recovery Rates for Non-Performing Loans," Risks, MDPI, vol. 7(1), pages 1-17, February.
    17. Tutz, Gerhard & Pößnecker, Wolfgang & Uhlmann, Lorenz, 2015. "Variable selection in general multinomial logit models," Computational Statistics & Data Analysis, Elsevier, vol. 82(C), pages 207-222.
    18. Ernesto Carrella & Richard M. Bailey & Jens Koed Madsen, 2018. "Indirect inference through prediction," Papers 1807.01579, arXiv.org.
    19. Rui Wang & Naihua Xiu & Kim-Chuan Toh, 2021. "Subspace quadratic regularization method for group sparse multinomial logistic regression," Computational Optimization and Applications, Springer, vol. 79(3), pages 531-559, July.
    20. Mkhadri, Abdallah & Ouhourane, Mohamed, 2013. "An extended variable inclusion and shrinkage algorithm for correlated variables," Computational Statistics & Data Analysis, Elsevier, vol. 57(1), pages 631-644.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:132:y:2019:i:c:p:212-224. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.