IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v120y2018icp25-41.html
   My bibliography  Save this article

Fast symmetric additive covariance smoothing

Author

Listed:
  • Cederbaum, Jona
  • Scheipl, Fabian
  • Greven, Sonja

Abstract

A fast bivariate smoothing approach for symmetric surfaces is proposed that has a wide range of applications. It is shown how it can be applied to estimate the covariance function in longitudinal data as well as multiple additive covariances in functional data with complex correlation structures. The proposed symmetric smoother can handle (possibly noisy) data sampled on a common, dense grid as well as irregularly or sparsely sampled data. Estimation is based on bivariate penalized spline smoothing using a mixed model representation and the symmetry is used to reduce computation time compared to the usual non-symmetric smoothers. The application of the approach in functional principal component analysis for very general functional linear mixed models is outlined and its practical value is demonstrated in two applications. The approach is evaluated in extensive simulations. Documented open source software is provided that implements the fast symmetric bivariate smoother building on established algorithms for additivemodels.

Suggested Citation

  • Cederbaum, Jona & Scheipl, Fabian & Greven, Sonja, 2018. "Fast symmetric additive covariance smoothing," Computational Statistics & Data Analysis, Elsevier, vol. 120(C), pages 25-41.
  • Handle: RePEc:eee:csdana:v:120:y:2018:i:c:p:25-41
    DOI: 10.1016/j.csda.2017.11.002
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167947317302372
    Download Restriction: Full text for ScienceDirect subscribers only.

    File URL: https://libkey.io/10.1016/j.csda.2017.11.002?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Reiss Philip T. & Huang Lei & Mennes Maarten, 2010. "Fast Function-on-Scalar Regression with Penalized Basis Expansions," The International Journal of Biostatistics, De Gruyter, vol. 6(1), pages 1-30, August.
    2. Fang Yao & Hans-Georg Müller & Andrew J. Clifford & Steven R. Dueker & Jennifer Follett & Yumei Lin & Bruce A. Buchholz & John S. Vogel, 2003. "Shrinkage Estimation for Functional Principal Component Scores with Application to the Population Kinetics of Plasma Folate," Biometrics, The International Biometric Society, vol. 59(3), pages 676-685, September.
    3. Simon N. Wood, 2011. "Fast stable restricted maximum likelihood and marginal likelihood estimation of semiparametric generalized linear models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 73(1), pages 3-36, January.
    4. Yao, Fang & Muller, Hans-Georg & Wang, Jane-Ling, 2005. "Functional Data Analysis for Sparse Longitudinal Data," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 577-590, June.
    5. Peter Hall & Hans‐Georg Müller & Fang Yao, 2008. "Modelling sparse generalized longitudinal observations with latent Gaussian processes," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 70(4), pages 703-723, September.
    6. Krivobokova, Tatyana & Kauermann, Goran, 2007. "A Note on Penalized Spline Smoothing With Correlated Errors," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 1328-1337, December.
    7. Philippe Besse & J. Ramsay, 1986. "Principal components analysis of sampled functions," Psychometrika, Springer;The Psychometric Society, vol. 51(2), pages 285-311, June.
    8. Haochang Shou & Vadim Zipunnikov & Ciprian M. Crainiceanu & Sonja Greven, 2015. "Structured functional principal component analysis," Biometrics, The International Biometric Society, vol. 71(1), pages 247-257, March.
    9. Fan, Jianqing & Huang, Tao & Li, Runze, 2007. "Analysis of Longitudinal Data With Semiparametric Estimation of Covariance Function," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 632-641, June.
    10. Wei Biao Wu, 2003. "Nonparametric estimation of large covariance matrices of longitudinal data," Biometrika, Biometrika Trust, vol. 90(4), pages 831-844, December.
    11. Philip T. Reiss & R. Todd Ogden, 2009. "Smoothing parameter selection for a class of semiparametric linear models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 71(2), pages 505-523, April.
    12. Gareth M. James & Trevor J. Hastie, 2001. "Functional linear discriminant analysis for irregularly sampled curves," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 63(3), pages 533-550.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sonja Greven & Fabian Scheipl, 2020. "Comments on: Inference and computation with Generalized Additive Models and their extensions," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 29(2), pages 343-350, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Weishampel, Anthony & Staicu, Ana-Maria & Rand, William, 2023. "Classification of social media users with generalized functional data analysis," Computational Statistics & Data Analysis, Elsevier, vol. 179(C).
    2. Philip T. Reiss & Jeff Goldsmith & Han Lin Shang & R. Todd Ogden, 2017. "Methods for Scalar-on-Function Regression," International Statistical Review, International Statistical Institute, vol. 85(2), pages 228-249, August.
    3. Jia, Shengji & Zhang, Chunming & Lu, Haoran, 2022. "Covariance function versus covariance matrix estimation in efficient semi-parametric regression for longitudinal data analysis," Journal of Multivariate Analysis, Elsevier, vol. 187(C).
    4. Philip T. Reiss & Lei Huang & Pei‐Shien Wu & Huaihou Chen & Stan Colcombe, 2017. "Pointwise influence matrices for functional‐response regression," Biometrics, The International Biometric Society, vol. 73(4), pages 1092-1101, December.
    5. Li, Yehua & Qiu, Yumou & Xu, Yuhang, 2022. "From multivariate to functional data analysis: Fundamentals, recent developments, and emerging areas," Journal of Multivariate Analysis, Elsevier, vol. 188(C).
    6. Reiss Philip T. & Huang Lei & Mennes Maarten, 2010. "Fast Function-on-Scalar Regression with Penalized Basis Expansions," The International Journal of Biostatistics, De Gruyter, vol. 6(1), pages 1-30, August.
    7. Huaihou Chen & Yuanjia Wang, 2011. "A Penalized Spline Approach to Functional Mixed Effects Model Analysis," Biometrics, The International Biometric Society, vol. 67(3), pages 861-870, September.
    8. Andrada Ivanescu & Ana-Maria Staicu & Fabian Scheipl & Sonja Greven, 2015. "Penalized function-on-function regression," Computational Statistics, Springer, vol. 30(2), pages 539-568, June.
    9. Jeff Goldsmith & Vadim Zipunnikov & Jennifer Schrack, 2015. "Generalized multilevel function-on-scalar regression and principal component analysis," Biometrics, The International Biometric Society, vol. 71(2), pages 344-353, June.
    10. Gertheiss, Jan & Goldsmith, Jeff & Staicu, Ana-Maria, 2017. "A note on modeling sparse exponential-family functional response curves," Computational Statistics & Data Analysis, Elsevier, vol. 105(C), pages 46-52.
    11. Frank van Berkum & Katrien Antonio & Michel Vellekoop, 2021. "Quantifying longevity gaps using micro‐level lifetime data," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 184(2), pages 548-570, April.
    12. Reiss Philip T. & Huang Lei, 2012. "Smoothness Selection for Penalized Quantile Regression Splines," The International Journal of Biostatistics, De Gruyter, vol. 8(1), pages 1-27, May.
    13. Daniel Backenroth & Russell T. Shinohara & Jennifer A. Schrack & Jeff Goldsmith, 2020. "Nonnegative decomposition of functional count data," Biometrics, The International Biometric Society, vol. 76(4), pages 1273-1284, December.
    14. Roel Verbelen & Katrien Antonio & Gerda Claeskens, 2018. "Unravelling the predictive power of telematics data in car insurance pricing," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 67(5), pages 1275-1304, November.
    15. Jia Chen & Degui Li & Yingcun Xia, 2015. "New Semiparametric Estimation Procedure for Functional Coefficient Longitudinal Data Models," Discussion Papers 15/17, Department of Economics, University of York.
    16. Huaihou Chen & Philip T. Reiss & Thaddeus Tarpey, 2014. "Optimally weighted L-super-2 distance for functional data," Biometrics, The International Biometric Society, vol. 70(3), pages 516-525, September.
    17. Mengfei Ran & Yihe Yang, 2022. "Optimal Estimation of Large Functional and Longitudinal Data by Using Functional Linear Mixed Model," Mathematics, MDPI, vol. 10(22), pages 1-28, November.
    18. Chen, Jia & Li, Degui & Xia, Yingcun, 2019. "Estimation of a rank-reduced functional-coefficient panel data model with serial correlation," Journal of Multivariate Analysis, Elsevier, vol. 173(C), pages 456-479.
    19. Xueying Zheng & Wing Fung & Zhongyi Zhu, 2013. "Robust estimation in joint mean–covariance regression model for longitudinal data," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 65(4), pages 617-638, August.
    20. Şentürk, Damla & Ghosh, Samiran & Nguyen, Danh V., 2014. "Exploratory time varying lagged regression: Modeling association of cognitive and functional trajectories with expected clinic visits in older adults," Computational Statistics & Data Analysis, Elsevier, vol. 73(C), pages 1-15.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:120:y:2018:i:c:p:25-41. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.