IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v88y2011i9p2925-2933.html
   My bibliography  Save this article

Combustion characteristics of a swirling inverse diffusion flame upon oxygen content variation

Author

Listed:
  • Zhen, H.S.
  • Leung, C.W.
  • Cheung, C.S.

Abstract

The combustion characteristics of a swirling inverse diffusion flame (IDF) upon variation of the oxygen content in the oxidizer were experimentally studied. The oxidizer jet was a mixture mainly composed of oxygen and nitrogen gases, with a volumetric oxygen fraction of 20%, 21% and 26%, and liquefied petroleum gas (LPG) was used as the fuel. Each set of experiment was conducted with constant oxygen content in the oxidizer. When the oxygen was varied, the changes in flame appearance, flame temperature, overall pollutant emission and heating behaviors of the swirling IDF were investigated. The swirling IDFs with different oxygen content in the oxidizer have similar flame structure involving a large-size and high-temperature internal recirculation zone (IRZ) which favors for thermal NO formation, and the thermal mechanism dominates the NO production for the swirling IDFs. The use of nitrogen-diluted air (with 20% oxygen) allowed the IDFs to operate at lower temperature with reduced NOx formation, compared to the case of air/LPG combustion (with 21% oxygen). Meanwhile, an increase in CO emission is observed. With oxygen-enriched air (26% oxygen), the increase in temperature and EINOx under lean conditions is more significant than under rich conditions. With 26% oxygen in the oxidizer stream, the IDF produces: (1) a shorter and narrowed navy-blue flame ring located closer to the burner exit, (2) highly luminous yellow flame extending into the central IRZ and above the blue flame ring, (3) a low CO emission, especially under lean conditions, (4) an increase in temperature at low Ф while a decrease in temperature at high Ф, and (5) an increase in EINOx at all Ф. The heating test using the swirling IDFs in flame impingement heat transfer reveals that the heating rate can be monotonically increased as oxygen content in the oxidizer jet increases under the lean condition (Ф=1.0). The oxygen enrichment does not contribute to the heating rate under the rich condition (Ф=2.0), because for the non-premixed combustion of an IDF, the enrichment in oxygen means a lower oxidizer jet Reynolds number and thus less complete combustion occurs as a result of reduced amount of entrained ambient air.

Suggested Citation

  • Zhen, H.S. & Leung, C.W. & Cheung, C.S., 2011. "Combustion characteristics of a swirling inverse diffusion flame upon oxygen content variation," Applied Energy, Elsevier, vol. 88(9), pages 2925-2933.
  • Handle: RePEc:eee:appene:v:88:y:2011:i:9:p:2925-2933
    DOI: 10.1016/j.apenergy.2011.02.041
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S030626191100153X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2011.02.041?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Miao, J. & Leung, C.W. & Cheung, C.S. & Huang, Z.H. & Zhen, H.S., 2016. "Effect of hydrogen addition on overall pollutant emissions of inverse diffusion flame," Energy, Elsevier, vol. 104(C), pages 284-294.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:88:y:2011:i:9:p:2925-2933. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.