IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v87y2010i4p1096-1101.html
   My bibliography  Save this article

Economic dispatch of chiller plant by gradient method for saving energy

Author

Listed:
  • Chang, Yung-Chung
  • Chan, Tien-Shun
  • Lee, Wen-Shing

Abstract

This study employs gradient method (GM) to solve economic dispatch of chiller plant (EDCP) problem. GM overcomes the flaw that with the Lagrangian multiplier (LM) method the system may not converge at low demand. In this study, the load balance constraint and the operating limit constraints of the chillers are fully accounted for. After analysis and comparison of the two cases studies, we are confident to say that this method not only solves the problem of convergence, but also produces results with high accuracy within a rapid timeframe. It can be perfectly applied to the operation of air-conditioning systems.

Suggested Citation

  • Chang, Yung-Chung & Chan, Tien-Shun & Lee, Wen-Shing, 2010. "Economic dispatch of chiller plant by gradient method for saving energy," Applied Energy, Elsevier, vol. 87(4), pages 1096-1101, April.
  • Handle: RePEc:eee:appene:v:87:y:2010:i:4:p:1096-1101
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306-2619(09)00177-9
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lee, Wen-Shing & Chen, Yi -Ting & Wu, Ting-Hau, 2009. "Optimization for ice-storage air-conditioning system using particle swarm algorithm," Applied Energy, Elsevier, vol. 86(9), pages 1589-1595, September.
    2. Hu, S.-C. & Chuah, Y.K., 2003. "Power consumption of semiconductor fabs in Taiwan," Energy, Elsevier, vol. 28(8), pages 895-907.
    3. Yu, F.W. & Chan, K.T., 2008. "Optimization of water-cooled chiller system with load-based speed control," Applied Energy, Elsevier, vol. 85(10), pages 931-950, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chiam, Zhonglin & Easwaran, Arvind & Mouquet, David & Fazlollahi, Samira & Millás, Jaume V., 2019. "A hierarchical framework for holistic optimization of the operations of district cooling systems," Applied Energy, Elsevier, vol. 239(C), pages 23-40.
    2. Tirmizi, Syed A. & Gandhidasan, P. & Zubair, Syed M., 2012. "Performance analysis of a chilled water system with various pumping schemes," Applied Energy, Elsevier, vol. 100(C), pages 238-248.
    3. Deng, Na & Cai, Rongchang & Gao, Yuan & Zhou, Zhihua & He, Guansong & Liu, Dongyi & Zhang, Awen, 2017. "A MINLP model of optimal scheduling for a district heating and cooling system: A case study of an energy station in Tianjin," Energy, Elsevier, vol. 141(C), pages 1750-1763.
    4. Federica Acerbi & Mirco Rampazzo & Giuseppe De Nicolao, 2020. "An Exact Algorithm for the Optimal Chiller Loading Problem and Its Application to the Optimal Chiller Sequencing Problem," Energies, MDPI, vol. 13(23), pages 1-29, December.
    5. Ma, Zhenjun & Wang, Shengwei, 2011. "Supervisory and optimal control of central chiller plants using simplified adaptive models and genetic algorithm," Applied Energy, Elsevier, vol. 88(1), pages 198-211, January.
    6. Ding, Yan & Wang, Qiaochu & Kong, Xiangfei & Yang, Kun, 2019. "Multi-objective optimisation approach for campus energy plant operation based on building heating load scenarios," Applied Energy, Elsevier, vol. 250(C), pages 1600-1617.
    7. Min-Yong Qi & Jun-Qing Li & Yu-Yan Han & Jin-Xin Dong, 2020. "Optimal Chiller Loading for Energy Conservation Using an Improved Fruit Fly Optimization Algorithm," Energies, MDPI, vol. 13(15), pages 1-18, July.
    8. Li, Ze & Guo, Junfei & Gao, Xinyu & Yang, Xiaohu & He, Ya-Ling, 2023. "A multi-strategy improved sparrow search algorithm of large-scale refrigeration system: Optimal loading distribution of chillers," Applied Energy, Elsevier, vol. 349(C).
    9. Lian, Kuang-Yow & Hong, Yong-Jie & Chang, Che-Wei & Su, Yu-Wei, 2022. "A novel data-driven optimal chiller loading regulator based on backward modeling approach," Applied Energy, Elsevier, vol. 327(C).
    10. Ron-Hendrik Peesel & Florian Schlosser & Henning Meschede & Heiko Dunkelberg & Timothy G. Walmsley, 2019. "Optimization of Cooling Utility System with Continuous Self-Learning Performance Models," Energies, MDPI, vol. 12(10), pages 1-17, May.
    11. Coelho, Leandro dos Santos & Klein, Carlos Eduardo & Sabat, Samrat L. & Mariani, Viviana Cocco, 2014. "Optimal chiller loading for energy conservation using a new differential cuckoo search approach," Energy, Elsevier, vol. 75(C), pages 237-243.
    12. Zheng, Zhi-xin & Li, Jun-qing & Duan, Pei-yong, 2019. "Optimal chiller loading by improved artificial fish swarm algorithm for energy saving," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 155(C), pages 227-243.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. He, Zhaoyu & Guo, Weimin & Zhang, Peng, 2022. "Performance prediction, optimal design and operational control of thermal energy storage using artificial intelligence methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    2. Wang, Zhe & Hong, Tianzhen & Piette, Mary Ann, 2019. "Predicting plug loads with occupant count data through a deep learning approach," Energy, Elsevier, vol. 181(C), pages 29-42.
    3. Kyriakarakos, George & Dounis, Anastasios I. & Rozakis, Stelios & Arvanitis, Konstantinos G. & Papadakis, George, 2011. "Polygeneration microgrids: A viable solution in remote areas for supplying power, potable water and hydrogen as transportation fuel," Applied Energy, Elsevier, vol. 88(12), pages 4517-4526.
    4. Pu, Jing & Liu, Guilian & Feng, Xiao, 2012. "Cumulative exergy analysis of ice thermal storage air conditioning system," Applied Energy, Elsevier, vol. 93(C), pages 564-569.
    5. Qinli Deng & Liangxin Xu & Tingfang Zhao & Xuexin Hong & Xiaofang Shan & Zhigang Ren, 2022. "Cooperative Optimization of A Refrigeration System with A Water-Cooled Chiller and Air-Cooled Heat Pump by Coupling BPNN and PSO," Energies, MDPI, vol. 15(19), pages 1-19, September.
    6. Hinkelman, Kathryn & Wang, Jing & Zuo, Wangda & Gautier, Antoine & Wetter, Michael & Fan, Chengliang & Long, Nicholas, 2022. "Modelica-based modeling and simulation of district cooling systems: A case study," Applied Energy, Elsevier, vol. 311(C).
    7. Min-Suk Jo & Jang-Hoon Shin & Won-Jun Kim & Jae-Weon Jeong, 2017. "Energy-Saving Benefits of Adiabatic Humidification in the Air Conditioning Systems of Semiconductor Cleanrooms," Energies, MDPI, vol. 10(11), pages 1-23, November.
    8. Chi-Chun Lo & Shang-Ho Tsai & Bor-Shyh Lin, 2016. "Ice Storage Air-Conditioning System Simulation with Dynamic Electricity Pricing: A Demand Response Study," Energies, MDPI, vol. 9(2), pages 1-16, February.
    9. Huang, Sen & Zuo, Wangda & Sohn, Michael D., 2016. "Amelioration of the cooling load based chiller sequencing control," Applied Energy, Elsevier, vol. 168(C), pages 204-215.
    10. Niknam, Taher & Firouzi, Bahman Bahmani & Ostadi, Amir, 2010. "A new fuzzy adaptive particle swarm optimization for daily Volt/Var control in distribution networks considering distributed generators," Applied Energy, Elsevier, vol. 87(6), pages 1919-1928, June.
    11. Liu, Xue-feng & Liu, Jin-ping & Lu, Ji-dong & Liu, Lei & Zou, Wei, 2012. "Research on operating characteristics of direct-return chilled water system controlled by variable temperature difference," Energy, Elsevier, vol. 40(1), pages 236-249.
    12. Zhao, Wenxuan & Li, Hangxin & Wang, Shengwei, 2022. "A comparative analysis on alternative air-conditioning systems for high-tech cleanrooms and their performance in different climate zones," Energy, Elsevier, vol. 261(PA).
    13. Chen, Qun & Xu, Yun-Chao & Hao, Jun-Hong, 2014. "An optimization method for gas refrigeration cycle based on the combination of both thermodynamics and entransy theory," Applied Energy, Elsevier, vol. 113(C), pages 982-989.
    14. Ma, Zhenjun & Wang, Shengwei, 2009. "Building energy research in Hong Kong: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(8), pages 1870-1883, October.
    15. Ma, Zhenjun & Wang, Shengwei, 2011. "Supervisory and optimal control of central chiller plants using simplified adaptive models and genetic algorithm," Applied Energy, Elsevier, vol. 88(1), pages 198-211, January.
    16. Xu, Tengfang & Flapper, Joris & Kramer, Klaas Jan, 2009. "Characterization of energy use and performance of global cheese processing," Energy, Elsevier, vol. 34(11), pages 1993-2000.
    17. Foo, Dominic C.Y. & Ng, Denny K.S. & Leong, Malwynn K.Y. & Chew, Irene M.L. & Subramaniam, Mahendran & Aziz, Ramlan & Lee, Jui-Yuan, 2014. "Targeting and design of chilled water network," Applied Energy, Elsevier, vol. 134(C), pages 589-599.
    18. Armin Ibitz, 2020. "Assessing Taiwan’s endeavors towards a circular economy: the electronics sector," Asia Europe Journal, Springer, vol. 18(4), pages 493-510, December.
    19. Hu, Mengqi & Weir, Jeffery D. & Wu, Teresa, 2012. "Decentralized operation strategies for an integrated building energy system using a memetic algorithm," European Journal of Operational Research, Elsevier, vol. 217(1), pages 185-197.
    20. Ebrahimi, Mahyar, 2020. "Storing electricity as thermal energy at community level for demand side management," Energy, Elsevier, vol. 193(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:87:y:2010:i:4:p:1096-1101. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.