IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v72y2002i3-4p659-675.html
   My bibliography  Save this article

Study on underground thermal characteristics by using digital national land information, and its application for energy utilization

Author

Listed:
  • Hamada, Yasuhiro
  • Marutani, Kaoru
  • Nakamura, Makoto
  • Nagasaka, Shigeyuki
  • Ochifuji, Kiyoshi
  • Fuchigami, Shigeki
  • Yokoyama, Shintaro

Abstract

This paper describes a method for evaluating characteristics of underground thermal properties and groundwater, whose evaluation is essential for designing systems of underground thermal energy utilization. First, the systems using underground thermal energy are classified into two categories: borehole system with indirect heat exchange, and aquifer system with direct use of underground water. These systems are also divided into thermal storage systems and heat source/sink systems. Second, the characteristics of the underground in Japan are analyzed by using a geographical information system (GIS) and hydrogeological information. Regulations on environmental protection, such as those relating to national parks for instance, and the distribution of thermal energy demand eliminate 77% of Japan from consideration for underground thermal energy utilization. Areas limited to borehole thermal energy utilization account for 17% of areas where underground thermal energy can be used, with the remaining 74% suitable for both boreholes and aquifers. Finally, we estimate the thickness of aquifer and groundwater velocity in Sapporo. We find that most parts of Sapporo are suitable for aquifer thermal energy storage (ATES).

Suggested Citation

  • Hamada, Yasuhiro & Marutani, Kaoru & Nakamura, Makoto & Nagasaka, Shigeyuki & Ochifuji, Kiyoshi & Fuchigami, Shigeki & Yokoyama, Shintaro, 2002. "Study on underground thermal characteristics by using digital national land information, and its application for energy utilization," Applied Energy, Elsevier, vol. 72(3-4), pages 659-675, July.
  • Handle: RePEc:eee:appene:v:72:y:2002:i:3-4:p:659-675
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306-2619(02)00055-7
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gemelli, Alberto & Mancini, Adriano & Longhi, Sauro, 2011. "GIS-based energy-economic model of low temperature geothermal resources: A case study in the Italian Marche region," Renewable Energy, Elsevier, vol. 36(9), pages 2474-2483.
    2. Manon Bulté & Thierry Duren & Olivier Bouhon & Estelle Petitclerc & Mathieu Agniel & Alain Dassargues, 2021. "Numerical Modeling of the Interference of Thermally Unbalanced Aquifer Thermal Energy Storage Systems in Brussels (Belgium)," Energies, MDPI, vol. 14(19), pages 1-17, September.
    3. Sommer, Wijbrand & Valstar, Johan & Leusbrock, Ingo & Grotenhuis, Tim & Rijnaarts, Huub, 2015. "Optimization and spatial pattern of large-scale aquifer thermal energy storage," Applied Energy, Elsevier, vol. 137(C), pages 322-337.
    4. Rapantova, Nada & Pospisil, Pavel & Koziorek, Jiri & Vojcinak, Petr & Grycz, David & Rozehnal, Zdenek, 2016. "Optimisation of experimental operation of borehole thermal energy storage," Applied Energy, Elsevier, vol. 181(C), pages 464-476.
    5. Hamada, Yasuhiro & Nakamura, Makoto & Saitoh, Hisashi & Kubota, Hideki & Ochifuji, Kiyoshi, 2007. "Improved underground heat exchanger by using no-dig method for space heating and cooling," Renewable Energy, Elsevier, vol. 32(3), pages 480-495.
    6. Lu, Hongwei & Tian, Peipei & He, Li, 2019. "Evaluating the global potential of aquifer thermal energy storage and determining the potential worldwide hotspots driven by socio-economic, geo-hydrologic and climatic conditions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 788-796.
    7. Fleuchaus, Paul & Godschalk, Bas & Stober, Ingrid & Blum, Philipp, 2018. "Worldwide application of aquifer thermal energy storage – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 861-876.
    8. Tittelein, Pierre & Achard, Gilbert & Wurtz, Etienne, 2009. "Modelling earth-to-air heat exchanger behaviour with the convolutive response factors method," Applied Energy, Elsevier, vol. 86(9), pages 1683-1691, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:72:y:2002:i:3-4:p:659-675. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.