IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v356y2024ics030626192301677x.html
   My bibliography  Save this article

Joint chance-constrained program based electric vehicles optimal dispatching strategy considering drivers' response uncertainty

Author

Listed:
  • Zhang, Kaizhe
  • Xu, Yinliang
  • Sun, Hongbin

Abstract

Electric vehicles (EVs) bring both opportunities and challenges to the distribution network due to their features of random behavior, storage capacity and charging flexibility. EV aggregator (EVA) can serve to unlock the dispatching potential of large scale of EVs and participate in the joint energy and reserve electricity market. In this paper, the improved EVA model for ancillary services is firstly established. Then, the dispatching potential of EVs considering drivers' response willingness and its uncertainty through EVA is explored. To obtain the optimal incentive price considering the driver response uncertainty, the joint chance-constrained program (JCCP) model is proposed. Due to the nonlinearity and nonconvexity of probability constraints, the developed JCCP model is intractable. A Monte Carlo based sequential convex approximation (SCA) algorithm is further developed to achieve the tractability and solve the JCCP model effectively. Case studies show that the proposed incentive program can reduce 15.1% net cost of EVA compared to uncoordinated charging. Besides, the proposed SCA algorithm can solve the JCCP problem with more accurate and less conservative results compared to the existing method, while achieving a decent computational efficiency for the day-ahead dispatching.

Suggested Citation

  • Zhang, Kaizhe & Xu, Yinliang & Sun, Hongbin, 2024. "Joint chance-constrained program based electric vehicles optimal dispatching strategy considering drivers' response uncertainty," Applied Energy, Elsevier, vol. 356(C).
  • Handle: RePEc:eee:appene:v:356:y:2024:i:c:s030626192301677x
    DOI: 10.1016/j.apenergy.2023.122313
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S030626192301677X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2023.122313?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Pavić, Ivan & Capuder, Tomislav & Kuzle, Igor, 2015. "Value of flexible electric vehicles in providing spinning reserve services," Applied Energy, Elsevier, vol. 157(C), pages 60-74.
    2. Heinisch, Verena & Göransson, Lisa & Erlandsson, Rasmus & Hodel, Henrik & Johnsson, Filip & Odenberger, Mikael, 2021. "Smart electric vehicle charging strategies for sectoral coupling in a city energy system," Applied Energy, Elsevier, vol. 288(C).
    3. Zhang, Qian & Wu, Xiaohan & Deng, Xiaosong & Huang, Yaoyu & Li, Chunyan & Wu, Jiaqi, 2023. "Bidding strategy for wind power and Large-scale electric vehicles participating in Day-ahead energy and frequency regulation market," Applied Energy, Elsevier, vol. 341(C).
    4. Park, Sung-Won & Cho, Kyu-Sang & Hoefter, Gregor & Son, Sung-Yong, 2022. "Electric vehicle charging management using location-based incentives for reducing renewable energy curtailment considering the distribution system," Applied Energy, Elsevier, vol. 305(C).
    5. Dai, Ziyi & Liu, Haobing & Rodgers, Michael O. & Guensler, Randall, 2022. "Electric vehicle market potential and associated energy and emissions reduction benefits," Applied Energy, Elsevier, vol. 322(C).
    6. de la Torre, S. & Aguado, J.A. & Sauma, E., 2023. "Optimal scheduling of ancillary services provided by an electric vehicle aggregator," Energy, Elsevier, vol. 265(C).
    7. Wu, Chuantao & Chen, Cen & Ma, Yuncong & Li, Feiyu & Sui, Quan & Lin, Xiangning & Wei, Fanrong & Li, Zhengtian, 2022. "Enhancing resilient restoration of distribution systems utilizing electric vehicles and supporting incentive mechanism," Applied Energy, Elsevier, vol. 322(C).
    8. Visser, L.R. & Kootte, M.E. & Ferreira, A.C. & Sicurani, O. & Pauwels, E.J. & Vuik, C. & Van Sark, W.G.J.H.M. & AlSkaif, T.A., 2022. "An operational bidding framework for aggregated electric vehicles on the electricity spot market," Applied Energy, Elsevier, vol. 308(C).
    9. L. Jeff Hong & Guangwu Liu, 2009. "Simulating Sensitivities of Conditional Value at Risk," Management Science, INFORMS, vol. 55(2), pages 281-293, February.
    10. Ensslen, Axel & Ringler, Philipp & Dörr, Lasse & Jochem, Patrick & Zimmermann, Florian & Fichtner, Wolf, 2018. "Incentivizing smart charging: Modeling charging tariffs for electric vehicles in German and French electricity markets," MPRA Paper 91543, University Library of Munich, Germany, revised 17 Feb 2018.
    11. Zheng, Yanchong & Yu, Hang & Shao, Ziyun & Jian, Linni, 2020. "Day-ahead bidding strategy for electric vehicle aggregator enabling multiple agent modes in uncertain electricity markets," Applied Energy, Elsevier, vol. 280(C).
    12. L. Jeff Hong & Yi Yang & Liwei Zhang, 2011. "Sequential Convex Approximations to Joint Chance Constrained Programs: A Monte Carlo Approach," Operations Research, INFORMS, vol. 59(3), pages 617-630, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Guo, Shiliang & Li, Pengpeng & Ma, Kai & Yang, Bo & Yang, Jie, 2022. "Robust energy management for industrial microgrid considering charging and discharging pressure of electric vehicles," Applied Energy, Elsevier, vol. 325(C).
    2. Xiangchu Xu & Zewei Zhan & Zengqiang Mi & Ling Ji, 2023. "An Optimized Decision Model for Electric Vehicle Aggregator Participation in the Electricity Market Based on the Stackelberg Game," Sustainability, MDPI, vol. 15(20), pages 1-26, October.
    3. L. Jeff Hong & Zhaolin Hu & Liwei Zhang, 2014. "Conditional Value-at-Risk Approximation to Value-at-Risk Constrained Programs: A Remedy via Monte Carlo," INFORMS Journal on Computing, INFORMS, vol. 26(2), pages 385-400, May.
    4. Zheng, Yanchong & Wang, Yubin & Yang, Qiang, 2023. "Bidding strategy design for electric vehicle aggregators in the day-ahead electricity market considering price volatility: A risk-averse approach," Energy, Elsevier, vol. 283(C).
    5. Strobel, Leo & Schlund, Jonas & Pruckner, Marco, 2022. "Joint analysis of regional and national power system impacts of electric vehicles—A case study for Germany on the county level in 2030," Applied Energy, Elsevier, vol. 315(C).
    6. Youssef Amry & Elhoussin Elbouchikhi & Franck Le Gall & Mounir Ghogho & Soumia El Hani, 2022. "Electric Vehicle Traction Drives and Charging Station Power Electronics: Current Status and Challenges," Energies, MDPI, vol. 15(16), pages 1-30, August.
    7. Silvana M. Pesenti & Pietro Millossovich & Andreas Tsanakas, 2023. "Differential Sensitivity in Discontinuous Models," Papers 2310.06151, arXiv.org.
    8. Cleary, Kathryne & Palmer, Karen, 2020. "Encouraging Electrification through Energy Service Subscriptions," RFF Working Paper Series 20-09, Resources for the Future.
    9. Bernardo Freitas Paulo da Costa & Silvana M. Pesenti & Rodrigo S. Targino, 2023. "Risk Budgeting Portfolios from Simulations," Papers 2302.01196, arXiv.org.
    10. Juan Ma & Foad Mahdavi Pajouh & Balabhaskar Balasundaram & Vladimir Boginski, 2016. "The Minimum Spanning k -Core Problem with Bounded CVaR Under Probabilistic Edge Failures," INFORMS Journal on Computing, INFORMS, vol. 28(2), pages 295-307, May.
    11. Borgonovo, Emanuele & Gatti, Stefano, 2013. "Risk analysis with contractual default. Does covenant breach matter?," European Journal of Operational Research, Elsevier, vol. 230(2), pages 431-443.
    12. L. Jeff Hong & Zhiyuan Huang & Henry Lam, 2021. "Learning-Based Robust Optimization: Procedures and Statistical Guarantees," Management Science, INFORMS, vol. 67(6), pages 3447-3467, June.
    13. Viktor Slednev & Patrick Jochem & Wolf Fichtner, 2022. "Impacts of electric vehicles on the European high and extra high voltage power grid," Journal of Industrial Ecology, Yale University, vol. 26(3), pages 824-837, June.
    14. Zhiwei Liao & Wenjuan Tao & Bowen Wang & Ye Liu, 2024. "Bidding Strategy for Wind and Thermal Power Joint Participation in the Electricity Spot Market Considering Uncertainty," Energies, MDPI, vol. 17(7), pages 1-19, April.
    15. Park, Sung-Won & Son, Sung-Yong, 2023. "Techno-economic analysis for the electric vehicle battery aging management of charge point operator," Energy, Elsevier, vol. 280(C).
    16. Álvaro Porras & Concepción Domínguez & Juan Miguel Morales & Salvador Pineda, 2023. "Tight and Compact Sample Average Approximation for Joint Chance-Constrained Problems with Applications to Optimal Power Flow," INFORMS Journal on Computing, INFORMS, vol. 35(6), pages 1454-1469, November.
    17. Qingbo Tan & Zhuning Wang & Wei Fan & Xudong Li & Xiangguang Li & Fanqi Li & Zihao Zhao, 2022. "Development Path and Model Design of a New Energy Vehicle in China," Energies, MDPI, vol. 16(1), pages 1-15, December.
    18. Welington Oliveira, 2019. "Proximal bundle methods for nonsmooth DC programming," Journal of Global Optimization, Springer, vol. 75(2), pages 523-563, October.
    19. García-Villalobos, J. & Zamora, I. & Knezović, K. & Marinelli, M., 2016. "Multi-objective optimization control of plug-in electric vehicles in low voltage distribution networks," Applied Energy, Elsevier, vol. 180(C), pages 155-168.
    20. W. Ackooij & S. Demassey & P. Javal & H. Morais & W. Oliveira & B. Swaminathan, 2021. "A bundle method for nonsmooth DC programming with application to chance-constrained problems," Computational Optimization and Applications, Springer, vol. 78(2), pages 451-490, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:356:y:2024:i:c:s030626192301677x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.