IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v353y2024ipas0306261923014174.html
   My bibliography  Save this article

Resilience-oriented planning of integrated electricity and heat systems: A stochastic distributionally robust optimization approach

Author

Listed:
  • Zhou, Yizhou
  • Li, Xiang
  • Han, Haiteng
  • Wei, Zhinong
  • Zang, Haixiang
  • Sun, Guoqiang
  • Chen, Sheng

Abstract

The resilience management of energy and power systems is of utmost importance in mitigating the impact of extreme events, which have resulted in devastating disasters and substantial economic losses. We present a novel stochastic distributionally robust optimization approach for the resilience-oriented planning of integrated electricity and heat systems (IEHSs). Firstly, A resilience-oriented planning model is developed for the IEHS, which incorporates the hardening of both electricity and heat networks, while also considering the deployment of both electric and thermal energy storages to enhance the resilience of the IEHS as a whole. Then, the stage-by-stage uncertainties associated with extreme weather events faced by the IEHS are accounted for by a stochastic distributionally robust optimization approach, where the uncertainty in the intensity of contingent extreme events is addressed via a stochastic optimization approach, while the uncertainty in the occurrence of outages resulting from a specific extreme event is addressed by a distributionally robust optimization approach. Finally, the stochastic distributionally robust optimization model is transformed into an equivalent three-level model, which is solved using a customized column-and-constraint generation algorithm. The effectiveness and superiority of the proposed approach according to the enhanced resilience and reduced costs are demonstrated by numerical simulations.

Suggested Citation

  • Zhou, Yizhou & Li, Xiang & Han, Haiteng & Wei, Zhinong & Zang, Haixiang & Sun, Guoqiang & Chen, Sheng, 2024. "Resilience-oriented planning of integrated electricity and heat systems: A stochastic distributionally robust optimization approach," Applied Energy, Elsevier, vol. 353(PA).
  • Handle: RePEc:eee:appene:v:353:y:2024:i:pa:s0306261923014174
    DOI: 10.1016/j.apenergy.2023.122053
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261923014174
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2023.122053?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Liu, Xuezhi & Wu, Jianzhong & Jenkins, Nick & Bagdanavicius, Audrius, 2016. "Combined analysis of electricity and heat networks," Applied Energy, Elsevier, vol. 162(C), pages 1238-1250.
    2. Perera, A.T.D. & Javanroodi, Kavan & Nik, Vahid M., 2021. "Climate resilient interconnected infrastructure: Co-optimization of energy systems and urban morphology," Applied Energy, Elsevier, vol. 285(C).
    3. Li, Xue & Du, Xiaoxue & Jiang, Tao & Zhang, Rufeng & Chen, Houhe, 2022. "Coordinating multi-energy to improve urban integrated energy system resilience against extreme weather events," Applied Energy, Elsevier, vol. 309(C).
    4. Saravi, Vahid Sabzpoosh & Kalantar, Mohsen & Anvari-Moghaddam, Amjad, 2022. "Resilience-constrained expansion planning of integrated power–gas–heat distribution networks," Applied Energy, Elsevier, vol. 323(C).
    5. Ruijie Liu & Zhejing Bao & Jun Zheng & Lingxia Lu & Miao Yu, 2021. "Two-Stage Robust and Economic Scheduling for Electricity-Heat Integrated Energy System under Wind Power Uncertainty," Energies, MDPI, vol. 14(24), pages 1-25, December.
    6. Wang, Han & Hou, Kai & Zhao, Junbo & Yu, Xiaodan & Jia, Hongjie & Mu, Yunfei, 2022. "Planning-Oriented resilience assessment and enhancement of integrated electricity-gas system considering multi-type natural disasters," Applied Energy, Elsevier, vol. 315(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Zeyu & Li, Hang & Hou, Kai & Xu, Xiandong & Jia, Hongjie & Zhu, Lewei & Mu, Yunfei, 2023. "Risk assessment and alleviation of regional integrated energy system considering cross-system failures," Applied Energy, Elsevier, vol. 350(C).
    2. Xie, Haipeng & Sun, Xiaotian & Fu, Wei & Chen, Chen & Bie, Zhaohong, 2023. "Risk management for integrated power and natural gas systems against extreme weather: A coalitional insurance contract approach," Energy, Elsevier, vol. 263(PB).
    3. Ren, Hongbo & Jiang, Zipei & Wu, Qiong & Li, Qifen & Lv, Hang, 2023. "Optimal planning of an economic and resilient district integrated energy system considering renewable energy uncertainty and demand response under natural disasters," Energy, Elsevier, vol. 277(C).
    4. Jiang, Tao & Li, Xue & Kou, Xiao & Zhang, Rufeng & Tian, Guoda & Li, Fangxing, 2022. "Available transfer capability evaluation in electricity-dominated integrated hybrid energy systems with uncertain wind power: An interval optimization solution," Applied Energy, Elsevier, vol. 314(C).
    5. Wang, Jiangjiang & Deng, Hongda & Qi, Xiaoling, 2022. "Cost-based site and capacity optimization of multi-energy storage system in the regional integrated energy networks," Energy, Elsevier, vol. 261(PA).
    6. Qiu, Lei & Wang, Xiaoyang & Wei, Jia, 2023. "Energy security and energy management: The role of extreme natural events," Innovation and Green Development, Elsevier, vol. 2(2).
    7. Huang, Chunjun & Zong, Yi & You, Shi & Træholt, Chresten & Zheng, Yi & Wang, Jiawei & Zheng, Zixuan & Xiao, Xianyong, 2023. "Economic and resilient operation of hydrogen-based microgrids: An improved MPC-based optimal scheduling scheme considering security constraints of hydrogen facilities," Applied Energy, Elsevier, vol. 335(C).
    8. Li, Weiwei & Qian, Tong & Zhao, Wei & Huang, Wenwei & Zhang, Yin & Xie, Xuehua & Tang, Wenhu, 2023. "Decentralized optimization for integrated electricity–heat systems with data center based energy hub considering communication packet loss," Applied Energy, Elsevier, vol. 350(C).
    9. Wang, Lixiao & Jing, Z.X. & Zheng, J.H. & Wu, Q.H. & Wei, Feng, 2018. "Decentralized optimization of coordinated electrical and thermal generations in hierarchical integrated energy systems considering competitive individuals," Energy, Elsevier, vol. 158(C), pages 607-622.
    10. Zhang, Menglin & Wu, Qiuwei & Wen, Jinyu & Pan, Bo & Qi, Shiqiang, 2020. "Two-stage stochastic optimal operation of integrated electricity and heat system considering reserve of flexible devices and spatial-temporal correlation of wind power," Applied Energy, Elsevier, vol. 275(C).
    11. Zheng, Jinfu & Zhou, Zhigang & Zhao, Jianing & Wang, Jinda, 2018. "Effects of the operation regulation modes of district heating system on an integrated heat and power dispatch system for wind power integration," Applied Energy, Elsevier, vol. 230(C), pages 1126-1139.
    12. Guoqiang Sun & Wenxue Wang & Yi Wu & Wei Hu & Zijun Yang & Zhinong Wei & Haixiang Zang & Sheng Chen, 2019. "A Nonlinear Analytical Algorithm for Predicting the Probabilistic Mass Flow of a Radial District Heating Network," Energies, MDPI, vol. 12(7), pages 1-20, March.
    13. Beigvand, Soheil Derafshi & Abdi, Hamdi & La Scala, Massimo, 2017. "A general model for energy hub economic dispatch," Applied Energy, Elsevier, vol. 190(C), pages 1090-1111.
    14. Zhang, Suhan & Gu, Wei & Lu, Hai & Qiu, Haifeng & Lu, Shuai & Wang, Dada & Liang, Junyu & Li, Wenyun, 2021. "Superposition-principle based decoupling method for energy flow calculation in district heating networks," Applied Energy, Elsevier, vol. 295(C).
    15. Meng, Fanchao & Zhang, Lei & Ren, Guoyu & Zhang, Ruixue, 2023. "Impacts of UHI on variations in cooling loads in buildings during heatwaves: A case study of Beijing and Tianjin, China," Energy, Elsevier, vol. 273(C).
    16. Zhang, Suhan & Gu, Wei & Qiu, Haifeng & Yao, Shuai & Pan, Guangsheng & Chen, Xiaogang, 2021. "State estimation models of district heating networks for integrated energy system considering incomplete measurements," Applied Energy, Elsevier, vol. 282(PA).
    17. Yu Huang & Kai Yang & Weiting Zhang & Kwang Y. Lee, 2018. "Hierarchical Energy Management for the MultiEnergy Carriers System with Different Interest Bodies," Energies, MDPI, vol. 11(10), pages 1-18, October.
    18. Wang, L.X. & Zheng, J.H. & Li, M.S. & Lin, X. & Jing, Z.X. & Wu, P.Z. & Wu, Q.H. & Zhou, X.X., 2019. "Multi-time scale dynamic analysis of integrated energy systems: An individual-based model," Applied Energy, Elsevier, vol. 237(C), pages 848-861.
    19. Zheng, Jinfu & Zhou, Zhigang & Zhao, Jianing & Hu, Songtao & Wang, Jinda, 2021. "Effects of intermittent heating on an integrated heat and power dispatch system for wind power integration and corresponding operation regulation," Applied Energy, Elsevier, vol. 287(C).
    20. Kavvadias, Konstantinos C. & Quoilin, Sylvain, 2018. "Exploiting waste heat potential by long distance heat transmission: Design considerations and techno-economic assessment," Applied Energy, Elsevier, vol. 216(C), pages 452-465.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:353:y:2024:i:pa:s0306261923014174. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.