IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v332y2023ics030626192201652x.html
   My bibliography  Save this article

Influence of the anode overhang on the open-circuit voltage and the ageing of lithium-ion batteries—A model based study

Author

Listed:
  • Hildenbrand, Felix
  • Ditscheid, Dominik
  • Barbers, Elias
  • Sauer, Dirk Uwe

Abstract

The anode overhang has been proven to be a non-negligible influencing factor in the ageing trajectory of lithium-ion batteries. It acts through the transfer of active lithium between the anode overhang and the active anode by changing reversibly the cell balancing. In this work, the anode overhang is proven to influence the open-circuit voltage. Through a high-precision measurement, a persistent rise of the open-circuit voltage was observed, which we have demonstrated to originate in the anode overhang effect. The dimensions and structure of the anode overhang were verified by a post-mortem analysis of the cell and matched with the voltage behaviour. Derived from this finding, an existing electrical–thermal ageing model was extended to allow the simulation of the interaction between the anode overhang and the capacity. With a Bayesian optimisation approach, the extended model allowed to drastically improve model parametrisation when ageing test data include an increase in capacity. The resulting model was verified with the simulation of two ageing profiles, each including varying ageing conditions and phases of capacity recovery. The model allows ageing predictions with a deviation below 4% of the remaining capacity after more than 750 days of ageing. The model is publicly available as part of an open-source project.

Suggested Citation

  • Hildenbrand, Felix & Ditscheid, Dominik & Barbers, Elias & Sauer, Dirk Uwe, 2023. "Influence of the anode overhang on the open-circuit voltage and the ageing of lithium-ion batteries—A model based study," Applied Energy, Elsevier, vol. 332(C).
  • Handle: RePEc:eee:appene:v:332:y:2023:i:c:s030626192201652x
    DOI: 10.1016/j.apenergy.2022.120395
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S030626192201652X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2022.120395?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Rücker, Fabian & Schoeneberger, Ilka & Wilmschen, Till & Sperling, Dustin & Haberschusz, David & Figgener, Jan & Sauer, Dirk Uwe, 2022. "Self-sufficiency and charger constraints of prosumer households with vehicle-to-home strategies," Applied Energy, Elsevier, vol. 317(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mohamed Azzam & Moritz Ehrensberger & Reinhard Scheuer & Christian Endisch & Meinert Lewerenz, 2023. "Long-Term Self-Discharge Measurements and Modelling for Various Cell Types and Cell Potentials," Energies, MDPI, vol. 16(9), pages 1-19, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Matteo Fresia & Stefano Bracco, 2023. "Electric Vehicle Fleet Management for a Prosumer Building with Renewable Generation," Energies, MDPI, vol. 16(20), pages 1-16, October.
    2. Wen, Le & Sheng, Mingyue Selena & Sharp, Basil & Meng, Tongyu & Du, Bo & Yi, Ming & Suomalainen, Kiti & Gkritza, Konstantina, 2023. "Exploration of the nexus between solar potential and electric vehicle uptake: A case study of Auckland, New Zealand," Energy Policy, Elsevier, vol. 173(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:332:y:2023:i:c:s030626192201652x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.