IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v299y2021ics0306261921007273.html
   My bibliography  Save this article

Multiscale operando X-ray investigations provide insights into electro-chemo-mechanical behavior of lithium intercalation cathodes

Author

Listed:
  • Su, Laisuo
  • Choi, Paul
  • Nakamura, Nathan
  • Charalambous, Harry
  • Litster, Shawn
  • Ilavsky, Jan
  • Reeja-Jayan, B.

Abstract

The electrochemical performance and cycle life of lithium-ion batteries (LIBs) depend on the electrochemical, chemical, and mechanical behavior of electrodes and electrolytes. Despite extensive studies conducted previously, challenges exist to decouple these behaviors, capture the evolution of electro-chemo-mechanical behavior in realistic conditions, and correlate atomic-scale stress evolution to micro-scale bulk mechanical degradation. Here, we report multiscale operando techniques to investigate polydisperse battery electrodes by integrating volume-averaged quantitative synchrotron X-ray scattering with high-resolution transmission X-ray microscopy (TXM). The former provides us information spanning a wide spatial range, from Angstrom-level atomic structures to micrometer-level particle scales, while the latter provides time-resolved 2D images of the particles during cycling. The complementarity of the two operando techniques is demonstrated by an over-lithiation test of LiCoO2 electrodes, where particles crack and eventually pulverize. Additionally, the techniques are applied to study LiCoO2 cycling stability from 3.0 V to 4.5 V. Operando X-ray scattering result shows nanometer-scale features keep forming in LiCoO2 electrodes during cycling, resulting in an increased projected area observed by the TXM experiment. The formation of such features is inhibited by a polymer coating on the electrode, leading to vastly improved cycling stability. The polymer coating alleviates LiCoO2 surface deterioration, reduces side product generation, and inhibits LiCoO2 particles volume expansion during the cycling test. These operando multimodal X-ray techniques presented herein thus offer a novel, multiscale diagnostic modality for studying existing and emerging battery materials, aiding the development of next-generation LIBs.

Suggested Citation

  • Su, Laisuo & Choi, Paul & Nakamura, Nathan & Charalambous, Harry & Litster, Shawn & Ilavsky, Jan & Reeja-Jayan, B., 2021. "Multiscale operando X-ray investigations provide insights into electro-chemo-mechanical behavior of lithium intercalation cathodes," Applied Energy, Elsevier, vol. 299(C).
  • Handle: RePEc:eee:appene:v:299:y:2021:i:c:s0306261921007273
    DOI: 10.1016/j.apenergy.2021.117315
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261921007273
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2021.117315?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhu, Juner & Zhang, Xiaowei & Luo, Hailing & Sahraei, Elham, 2018. "Investigation of the deformation mechanisms of lithium-ion battery components using in-situ micro tests," Applied Energy, Elsevier, vol. 224(C), pages 251-266.
    2. Pengfei Yan & Jianming Zheng & Jian Liu & Biqiong Wang & Xiaopeng Cheng & Yuefei Zhang & Xueliang Sun & Chongmin Wang & Ji-Guang Zhang, 2018. "Tailoring grain boundary structures and chemistry of Ni-rich layered cathodes for enhanced cycle stability of lithium-ion batteries," Nature Energy, Nature, vol. 3(7), pages 600-605, July.
    3. Ke, Xi & Zhao, Zhuozhuo & Liu, Jun & Shi, Zhicong & Li, Yunyong & Zhang, Lingyu & Zhang, Haiyan & Chen, Ying & Guo, Zaiping & Wu, Qihui & Liu, Liying, 2017. "Improvement in capacity retention of cathode material for high power density lithium ion batteries: The route of surface coating," Applied Energy, Elsevier, vol. 194(C), pages 540-548.
    4. Qi Liu & Xin Su & Dan Lei & Yan Qin & Jianguo Wen & Fangmin Guo & Yimin A. Wu & Yangchun Rong & Ronghui Kou & Xianghui Xiao & Frederic Aguesse & Javier Bareño & Yang Ren & Wenquan Lu & Yangxing Li, 2018. "Approaching the capacity limit of lithium cobalt oxide in lithium ion batteries via lanthanum and aluminium doping," Nature Energy, Nature, vol. 3(11), pages 936-943, November.
    5. Ding, Yin & Mu, Daobin & Wu, Borong & Wang, Rui & Zhao, Zhikun & Wu, Feng, 2017. "Recent progresses on nickel-rich layered oxide positive electrode materials used in lithium-ion batteries for electric vehicles," Applied Energy, Elsevier, vol. 195(C), pages 586-599.
    6. Paul R. Shearing, 2016. "Batteries: Imaging degradation," Nature Energy, Nature, vol. 1(11), pages 1-2, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jiarui He & Amruth Bhargav & Laisuo Su & Harry Charalambous & Arumugam Manthiram, 2023. "Intercalation-type catalyst for non-aqueous room temperature sodium-sulfur batteries," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    2. Chen, Haosen & Fan, Jinbao & Zhang, Mingliang & Feng, Xiaolong & Zhong, Ximing & He, Jianchao & Ai, Shigang, 2023. "Mechanism of inhomogeneous deformation and equal-stiffness design of large-format prismatic lithium-ion batteries," Applied Energy, Elsevier, vol. 332(C).
    3. Jiaxuan Wang & Feng Hao, 2023. "Experimental Investigations on the Chemo-Mechanical Coupling in Solid-State Batteries and Electrode Materials," Energies, MDPI, vol. 16(3), pages 1-17, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ren, Dongsheng & Feng, Xuning & Lu, Languang & He, Xiangming & Ouyang, Minggao, 2019. "Overcharge behaviors and failure mechanism of lithium-ion batteries under different test conditions," Applied Energy, Elsevier, vol. 250(C), pages 323-332.
    2. Sheng Yang & Wenwei Wang & Cheng Lin & Weixiang Shen & Yiding Li, 2019. "Investigation of Internal Short Circuits of Lithium-Ion Batteries under Mechanical Abusive Conditions," Energies, MDPI, vol. 12(10), pages 1-16, May.
    3. Maria Mechili & Christos Vaitsis & Nikolaos Argirusis & Pavlos K. Pandis & Georgia Sourkouni & Antonis A. Zorpas & Christos Argirusis, 2022. "Research Progress in Metal-Organic Framework Based Nanomaterials Applied in Battery Cathodes," Energies, MDPI, vol. 15(15), pages 1-30, July.
    4. Jianwen Liang & Yuanmin Zhu & Xiaona Li & Jing Luo & Sixu Deng & Yang Zhao & Yipeng Sun & Duojie Wu & Yongfeng Hu & Weihan Li & Tsun-Kong Sham & Ruying Li & Meng Gu & Xueliang Sun, 2023. "A gradient oxy-thiophosphate-coated Ni-rich layered oxide cathode for stable all-solid-state Li-ion batteries," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    5. Raijmakers, L.H.J. & Danilov, D.L. & Eichel, R.-A. & Notten, P.H.L., 2019. "A review on various temperature-indication methods for Li-ion batteries," Applied Energy, Elsevier, vol. 240(C), pages 918-945.
    6. Jung-Hui Kim & Ju-Myung Kim & Seok-Kyu Cho & Nag-Young Kim & Sang-Young Lee, 2022. "Redox-homogeneous, gel electrolyte-embedded high-mass-loading cathodes for high-energy lithium metal batteries," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    7. Wen, Jianping & Zhao, Dan & Zhang, Chuanwei, 2020. "An overview of electricity powered vehicles: Lithium-ion battery energy storage density and energy conversion efficiency," Renewable Energy, Elsevier, vol. 162(C), pages 1629-1648.
    8. Chia-Hsin Lin & Senthil-Kumar Parthasarathi & Satish Bolloju & Mozaffar Abdollahifar & Yu-Ting Weng & Nae-Lih Wu, 2022. "Synthesis of Micron-Sized LiNi 0.8 Co 0.1 Mn 0.1 O 2 and Its Application in Bimodal Distributed High Energy Density Li-Ion Battery Cathodes," Energies, MDPI, vol. 15(21), pages 1-15, October.
    9. Liu, Lishuo & Feng, Xuning & Zhang, Mingxuan & Lu, Languang & Han, Xuebing & He, Xiangming & Ouyang, Minggao, 2020. "Comparative study on substitute triggering approaches for internal short circuit in lithium-ion batteries," Applied Energy, Elsevier, vol. 259(C).
    10. Ren, Dongsheng & Liu, Xiang & Feng, Xuning & Lu, Languang & Ouyang, Minggao & Li, Jianqiu & He, Xiangming, 2018. "Model-based thermal runaway prediction of lithium-ion batteries from kinetics analysis of cell components," Applied Energy, Elsevier, vol. 228(C), pages 633-644.
    11. Minglei Mao & Xiao Ji & Qiyu Wang & Zejing Lin & Meiying Li & Tao Liu & Chengliang Wang & Yong-Sheng Hu & Hong Li & Xuejie Huang & Liquan Chen & Liumin Suo, 2023. "Anion-enrichment interface enables high-voltage anode-free lithium metal batteries," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    12. Seck, Gondia Sokhna & Hache, Emmanuel & Barnet, Charlène, 2022. "Potential bottleneck in the energy transition: The case of cobalt in an accelerating electro-mobility world," Resources Policy, Elsevier, vol. 75(C).
    13. Gang Sun & Fu-Da Yu & Mi Lu & Qingjun Zhu & Yunshan Jiang & Yongzhi Mao & John A. McLeod & Jason Maley & Jian Wang & Jigang Zhou & Zhenbo Wang, 2022. "Surface chemical heterogeneous distribution in over-lithiated Li1+xCoO2 electrodes," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    14. Wang, Qinggong & Yao, Wei & Zhang, Hui & Lu, Xiaochen, 2018. "Analysis of the performance of an alkali metal thermoelectric converter (AMTEC) based on a lumped thermal-electrochemical model," Applied Energy, Elsevier, vol. 216(C), pages 195-211.
    15. Gogwon Choe & Hyungsub Kim & Jaesub Kwon & Woochul Jung & Kyu-Young Park & Yong-Tae Kim, 2024. "Re-evaluation of battery-grade lithium purity toward sustainable batteries," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    16. He, Guannan & Ciez, Rebecca & Moutis, Panayiotis & Kar, Soummya & Whitacre, Jay F., 2020. "The economic end of life of electrochemical energy storage," Applied Energy, Elsevier, vol. 273(C).
    17. Chen, Haosen & Fan, Jinbao & Zhang, Mingliang & Feng, Xiaolong & Zhong, Ximing & He, Jianchao & Ai, Shigang, 2023. "Mechanism of inhomogeneous deformation and equal-stiffness design of large-format prismatic lithium-ion batteries," Applied Energy, Elsevier, vol. 332(C).
    18. Pan, Yongjun & Zhang, Xiaoxi & Liu, Yue & Wang, Huacui & Cao, Yangzheng & Liu, Xin & Liu, Binghe, 2022. "Dynamic behavior prediction of modules in crushing via FEA-DNN technique for durable battery-pack system design," Applied Energy, Elsevier, vol. 322(C).
    19. Junbo Zhang & Haikuo Zhang & Suting Weng & Ruhong Li & Di Lu & Tao Deng & Shuoqing Zhang & Ling Lv & Jiacheng Qi & Xuezhang Xiao & Liwu Fan & Shujiang Geng & Fuhui Wang & Lixin Chen & Malachi Noked & , 2023. "Multifunctional solvent molecule design enables high-voltage Li-ion batteries," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    20. Yi Pei & Qing Chen & Meiyu Wang & Pengjun Zhang & Qingyong Ren & Jingkai Qin & Penghao Xiao & Li Song & Yu Chen & Wen Yin & Xin Tong & Liang Zhen & Peng Wang & Cheng-Yan Xu, 2022. "A medium-entropy transition metal oxide cathode for high-capacity lithium metal batteries," Nature Communications, Nature, vol. 13(1), pages 1-13, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:299:y:2021:i:c:s0306261921007273. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.