IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v269y2020ics0306261920306693.html
   My bibliography  Save this article

Numerical investigation on the effect of electron injected air for thermal decomposition of solid waste

Author

Listed:
  • Ismail, Tamer M.
  • Kobayashi, Yasunori
  • Yoshikawa, Kunio
  • Lu, Ding
  • Kobori, Takahiro
  • Araki, Kuniomi
  • Kanazawa, Kiryu
  • Takahashi, Fumitake
  • Abd El-Salam, M.

Abstract

Many organizations in the world are interested in waste management problems and their potential solutions. In order to solve these problems, a Japanese venture company has developed an innovative thermal decomposer for organic wastes called ERCM (Earth-Resource-Ceramic-Machine). The ERCM reactor employs electron injected air to promote the thermal decomposition reaction, while the effect of electron injection into air has not yet been clarified. An experimental work was performed using a fixed bed reactor to explore the effects of different parameters of electron injection into air, the reaction temperature and different feedstock on the syngas generation. The main purpose of this study is to clarify the phenomena occurring in the ERCM reactor where a direct current electric field is produced in the flame reaction zone to enhance the thermal decomposition of wastes. In this regard, a mathematical model for simulating the thermal decomposition of solid waste in the presence of an electric field have been developed. The equations of aero-thermochemistry are coupled to the balance equations for densities of charged species, and the Poisson equation for the electrical potential is solved. The model was validated by the experimental data and showed a good agreement. The results showed that the electric field significantly improves the stabilization of the flame. From the release behavior of CO and CO2, it is noted that the electron injection would affect the char combustion process significantly. Finally the effect of the flame reaction zone generated by the field induced ion wind on the thermal decomposition was investigated.

Suggested Citation

  • Ismail, Tamer M. & Kobayashi, Yasunori & Yoshikawa, Kunio & Lu, Ding & Kobori, Takahiro & Araki, Kuniomi & Kanazawa, Kiryu & Takahashi, Fumitake & Abd El-Salam, M., 2020. "Numerical investigation on the effect of electron injected air for thermal decomposition of solid waste," Applied Energy, Elsevier, vol. 269(C).
  • Handle: RePEc:eee:appene:v:269:y:2020:i:c:s0306261920306693
    DOI: 10.1016/j.apenergy.2020.115157
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261920306693
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2020.115157?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lu, Ding & Yoshikawa, Kunio & Ismail, Tamer M. & Abd El-Salam, M., 2018. "Assessment of the carbonized woody briquette gasification in an updraft fixed bed gasifier using the Euler-Euler model," Applied Energy, Elsevier, vol. 220(C), pages 70-86.
    2. Ismail, Tamer M. & Monteiro, Eliseu & Ramos, Ana & El-Salam, M. Abd & Rouboa, Abel, 2019. "An Eulerian model for forest residues gasification in a plasma gasifier," Energy, Elsevier, vol. 182(C), pages 1069-1083.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ismail, Tamer M. & Yoshikawa, Kunio & Kobori, Takahiro & Kobayashi, Yoshinori & Kanazawa, Kiryu & Takahashi, Fumitake & Abd El-Salam, M., 2022. "Effect of electron injected air on the gasification performance of biomass," Applied Energy, Elsevier, vol. 311(C).
    2. Kobayashi, Yasunori & Ismail, Tamer M. & Kobori, Takahiro & Ding, Lu & Yoshikawa, Kunio & Araki, Kuniomi & Kanazawa, Kiryu & Takahashi, Fumitake, 2021. "Experimental investigation on the effect of electron injection into air for thermal decomposition of solid waste," Applied Energy, Elsevier, vol. 295(C).
    3. Kobori, Takahiro & Yoshikawa, Kunio & Ismail, Tamer M. & Yasser, T.M. & García, Abraham Castro & Kanazawa, Kiryu & Takahashi, Fumitake, 2022. "Effect of electron injection on oxidative pyrolysis of cellulose and polypropylene," Applied Energy, Elsevier, vol. 326(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Linzheng & Zhang, Ruizhi & Deng, Ruiqu & Liu, Zeqing & Luo, Yonghao, 2023. "Comprehensive parametric study of fixed-bed co-gasification process through Multiple Thermally Thick Particle (MTTP) model," Applied Energy, Elsevier, vol. 348(C).
    2. Vakalis, Stergios & Moustakas, Konstantinos, 2019. "Modelling of advanced gasification systems (MAGSY): Simulation and validation for the case of the rising co-current reactor," Applied Energy, Elsevier, vol. 242(C), pages 526-533.
    3. Ismail, Tamer M. & Yoshikawa, Kunio & Kobori, Takahiro & Kobayashi, Yoshinori & Kanazawa, Kiryu & Takahashi, Fumitake & Abd El-Salam, M., 2022. "Effect of electron injected air on the gasification performance of biomass," Applied Energy, Elsevier, vol. 311(C).
    4. Theppitak, Sarut & Hungwe, Douglas & Ding, Lu & Xin, Dai & Yu, Guangsuo & Yoshikawa, Kunio, 2020. "Comparison on solid biofuel production from wet and dry carbonization processes of food wastes," Applied Energy, Elsevier, vol. 272(C).
    5. Gabriele Calì & Paolo Deiana & Claudia Bassano & Simone Meloni & Enrico Maggio & Michele Mascia & Alberto Pettinau, 2020. "Syngas Production, Clean-Up and Wastewater Management in a Demo-Scale Fixed-Bed Updraft Biomass Gasification Unit," Energies, MDPI, vol. 13(10), pages 1-15, May.
    6. Pawlak-Kruczek, Halina & Mularski, Jakub & Ostrycharczyk, Michał & Czerep, Michał & Baranowski, Marcin & Mączka, Tadeusz & Sadowski, Krzysztof & Hulisz, Patryk, 2023. "Application of plasma burners for char combustion in a pulverized coal-fired (PC) boiler – Experimental and numerical analysis," Energy, Elsevier, vol. 279(C).
    7. Adnan, Muflih A. & Azis, Muhammad Mufti & Quddus, Mohammad R. & Hossain, Mohammad M., 2018. "Integrated liquid fuel based chemical looping combustion – parametric study for efficient power generation and CO2 capture," Applied Energy, Elsevier, vol. 228(C), pages 2398-2406.
    8. Zepeng Sun & Yazhuo Wang & Jing Gu & Haoran Yuan & Zejian Liu & Leilei Cheng & Xiang Li & Xian Li, 2023. "CFD Simulation and Experimental Study on a Thermal Energy Storage–Updraft Solid Waste Gasification Device," Energies, MDPI, vol. 16(12), pages 1-33, June.
    9. Angelos-Ikaros Altantzis & Nikolaos-Christos Kallistridis & George Stavropoulos & Anastasia Zabaniotou, 2022. "Peach Seeds Pyrolysis Integrated into a Zero Waste Biorefinery: an Experimental Study," Circular Economy and Sustainability,, Springer.
    10. Yang, Shiliang & Zhou, Tao & Wei, Yonggang & Hu, Jianhang & Wang, Hua, 2020. "Dynamical and thermal property of rising bubbles in the bubbling fluidized biomass gasifier with wide particle size distribution," Applied Energy, Elsevier, vol. 259(C).
    11. Knutsson, Pavleta & Maric, Jelena & Knutsson, Jesper & Larsson, Anton & Breitholtz, Claes & Seemann, Martin, 2019. "Potassium speciation and distribution for the K2CO3 additive-induced activation/deactivation of olivine during gasification of woody biomass," Applied Energy, Elsevier, vol. 248(C), pages 538-544.
    12. Zhang, Yayun & Duan, Dengle & Lei, Hanwu & Villota, Elmar & Ruan, Roger, 2019. "Jet fuel production from waste plastics via catalytic pyrolysis with activated carbons," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    13. Diamantis Almpantis & Anastasia Zabaniotou, 2021. "Technological Solutions and Tools for Circular Bioeconomy in Low-Carbon Transition: Simulation Modeling of Rice Husks Gasification for CHP by Aspen PLUS V9 and Feasibility Study by Aspen Process Econo," Energies, MDPI, vol. 14(7), pages 1-25, April.
    14. Jia, Yongsheng & Wang, Yingjie & Jiang, Cong & Wang, Xun & Hu, Zhiquan & Xiao, Bo & Liu, Shiming, 2022. "Simultaneous enhancement of the H2 yield and HCl removal efficiency from pyrolysis of infusion tube under novel mayenite-based mesoporous catalytic sorbents," Energy, Elsevier, vol. 244(PB).
    15. Eliseu Monteiro & Sérgio Ferreira, 2022. "Biomass Waste for Energy Production," Energies, MDPI, vol. 15(16), pages 1-5, August.
    16. Zhang, Teng & Zhang, Jingfeng & Yu, Yunsong & Zhang, Zaoxiao & Wang, Geoff G.X., 2023. "Up-rotating plasma gasifier for waste treatment to produce syngas and intensified by carbon dioxide," Energy, Elsevier, vol. 270(C).
    17. Matheus Oliveira & Ana Ramos & Tamer M. Ismail & Eliseu Monteiro & Abel Rouboa, 2022. "A Review on Plasma Gasification of Solid Residues: Recent Advances and Developments," Energies, MDPI, vol. 15(4), pages 1-21, February.
    18. Porcu, Andrea & Xu, Yupeng & Mureddu, Mauro & Dessì, Federica & Shahnam, Mehrdad & Rogers, William A. & Sastri, Bhima S. & Pettinau, Alberto, 2021. "Experimental validation of a multiphase flow model of a lab-scale fluidized-bed gasification unit," Applied Energy, Elsevier, vol. 293(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:269:y:2020:i:c:s0306261920306693. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.