IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v268y2020ics0306261920304797.html
   My bibliography  Save this article

Development of distributed combustion index from a swirl-assisted burner

Author

Listed:
  • Karyeyen, Serhat
  • Feser, Joseph S.
  • Jahoda, Edward
  • Gupta, Ashwani K.

Abstract

Colorless Distributed Combustion is a combustion technique to reduce pollutants emission, reduce noise, enhance flame stability, promote a uniform thermal field distribution in the flame, and mitigate combustion instability. To achieve these conditions, hot reactive gases must be entrained into the oxidizer to reduce the oxygen concentration, which slows down the reaction rate to broaden and homogenize the reaction front. This paper focuses on the development of a distributed combustion index that will predict transition to favorable distributed combustion conditions over a range of conditions. Distributed conditions were achieved by adding either N2 or CO2 dilution to the oxidizer stream to simulate hot gas entrainment. The index developed here is for either N2 or CO2 dilution and focuses on the effects of heat release intensity, equivalence ratio, and mixture preheat temperature. The results show heat release intensities in the range of 5.72–9.53 MW/m3-atm to have minimal effect on the oxygen concentration corresponding to transition to distributed combustion. In contrast, equivalence ratio and preheat temperature provided strong effects on this transition. Decrease in equivalence ratio from 0.9 to 0.6 required increased oxygen concentration for transition to distributed conditions by some 4% with N2 as the diluent and only 3% with CO2 as the diluent. Increase in mixture preheat temperature from 300 to 700 K decreased oxygen concentration transition requirements by some 3% with N2 and 2% for CO2. Emission levels obtained showed ultra-low NO and CO under favorable distributed combustion condition. The distributed combustion index development presented here is aimed to help guide in the design and development of novel next generation of advanced colorless distributed combustors with much reduced further experimentation.

Suggested Citation

  • Karyeyen, Serhat & Feser, Joseph S. & Jahoda, Edward & Gupta, Ashwani K., 2020. "Development of distributed combustion index from a swirl-assisted burner," Applied Energy, Elsevier, vol. 268(C).
  • Handle: RePEc:eee:appene:v:268:y:2020:i:c:s0306261920304797
    DOI: 10.1016/j.apenergy.2020.114967
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261920304797
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2020.114967?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Khalil, Ahmed E.E. & Gupta, Ashwani K., 2013. "Fuel flexible distributed combustion for efficient and clean gas turbine engines," Applied Energy, Elsevier, vol. 109(C), pages 267-274.
    2. Khalil, Ahmed E.E. & Gupta, Ashwani K., 2014. "Towards distributed combustion for ultra low emission using swirling and non-swirling flowfields," Applied Energy, Elsevier, vol. 121(C), pages 132-139.
    3. Khalil, Ahmed E.E. & Gupta, Ashwani K., 2018. "Fostering distributed combustion in a swirl burner using prevaporized liquid fuels," Applied Energy, Elsevier, vol. 211(C), pages 513-522.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hidegh, Gyöngyvér & Csemány, Dávid & Vámos, János & Kavas, László & Józsa, Viktor, 2021. "Mixture Temperature-Controlled combustion of different biodiesels and conventional fuels," Energy, Elsevier, vol. 234(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Enagi, Ibrahim I. & Al-attab, K.A. & Zainal, Z.A., 2018. "Liquid biofuels utilization for gas turbines: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 43-55.
    2. Tyliszczak, Artur & Boguslawski, Andrzej & Nowak, Dariusz, 2016. "Numerical simulations of combustion process in a gas turbine with a single and multi-point fuel injection system," Applied Energy, Elsevier, vol. 174(C), pages 153-165.
    3. Khidr, Kareem I. & Eldrainy, Yehia A. & EL-Kassaby, Mohamed M., 2017. "Towards lower gas turbine emissions: Flameless distributed combustion," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 1237-1266.
    4. Buffi, Marco & Valera-Medina, Agustin & Marsh, Richard & Pugh, Daniel & Giles, Anthony & Runyon, Jon & Chiaramonti, David, 2017. "Emissions characterization tests for hydrotreated renewable jet fuel from used cooking oil and its blends," Applied Energy, Elsevier, vol. 201(C), pages 84-93.
    5. Gövert, S. & Mira, D. & Kok, J.B.W. & Vázquez, M. & Houzeaux, G., 2015. "Turbulent combustion modelling of a confined premixed jet flame including heat loss effects using tabulated chemistry," Applied Energy, Elsevier, vol. 156(C), pages 804-815.
    6. Zhang, R.C. & Bai, N.J. & Fan, W.J. & Huang, X.Y. & Fan, X.Q., 2019. "Influence of flame stabilization and fuel injection modes on the flow and combustion characteristics of gas turbine combustor with cavity," Energy, Elsevier, vol. 189(C).
    7. Feser, Joseph S. & Bassioni, Ghada & Gupta, Ashwani K., 2018. "Effect of naphthalene addition to ethanol in distributed combustion," Applied Energy, Elsevier, vol. 216(C), pages 1-7.
    8. Syred, N. & Giles, A. & Lewis, J. & Abdulsada, M. & Valera Medina, A. & Marsh, R. & Bowen, P.J. & Griffiths, A.J., 2014. "Effect of inlet and outlet configurations on blow-off and flashback with premixed combustion for methane and a high hydrogen content fuel in a generic swirl burner," Applied Energy, Elsevier, vol. 116(C), pages 288-296.
    9. Escalante, Edwin Santiago Rios & Ramos, Luth Silva & Rodriguez Coronado, Christian J. & de Carvalho Júnior, João Andrade, 2022. "Evaluation of the potential feedstock for biojet fuel production: Focus in the Brazilian context," Renewable and Sustainable Energy Reviews, Elsevier, vol. 153(C).
    10. Khalil, Ahmed E.E. & Gupta, Ashwani K., 2015. "Impact of internal entrainment on high intensity distributed combustion," Applied Energy, Elsevier, vol. 156(C), pages 241-250.
    11. Nemitallah, Medhat A. & Imteyaz, Binash & Abdelhafez, Ahmed & Habib, Mohamed A., 2019. "Experimental and computational study on stability characteristics of hydrogen-enriched oxy-methane premixed flames," Applied Energy, Elsevier, vol. 250(C), pages 433-443.
    12. Cheong, Kin-Pang & Wang, Guochang & Wang, Bo & Zhu, Rong & Ren, Wei & Mi, Jianchun, 2019. "Stability and emission characteristics of nonpremixed MILD combustion from a parallel-jet burner in a cylindrical furnace," Energy, Elsevier, vol. 170(C), pages 1181-1190.
    13. Zhang, R.C. & Fan, W.J. & Shi, Q. & Tan, W.L., 2014. "Combustion and emissions characteristics of dual-channel double-vortex combustion for gas turbine engines," Applied Energy, Elsevier, vol. 130(C), pages 314-325.
    14. Khalil, Ahmed E.E. & Gupta, Ashwani K., 2015. "Internal entrainment effects on high intensity distributed combustion using non-intrusive diagnostics," Applied Energy, Elsevier, vol. 160(C), pages 467-476.
    15. Zhang, R.C. & Hao, F. & Fan, W.J., 2018. "Combustion and stability characteristics of ultra-compact combustor using cavity for gas turbines," Applied Energy, Elsevier, vol. 225(C), pages 940-954.
    16. Shen, Yazhou & Zhang, Kai & Zhang, Yan & Duwig, Christophe, 2023. "Characterisation of distributed combustion of reformed methanol blends in a model gas turbine combustor," Energy, Elsevier, vol. 272(C).
    17. Karyeyen, Serhat & Feser, Joseph S. & Gupta, Ashwani K., 2019. "Swirl assisted distributed combustion behavior using hydrogen-rich gaseous fuels," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    18. Aryana, Babak, 2016. "New version of DEA compressor for a novel hybrid gas turbine cycle: TurboDEA," Energy, Elsevier, vol. 111(C), pages 676-690.
    19. Kumari, Anupam & Sanjay,, 2015. "Investigation of parameters affecting exergy and emission performance of basic and intercooled gas turbine cycles," Energy, Elsevier, vol. 90(P1), pages 525-536.
    20. Li, Mingyu & He, Xiaomin & Zhao, Yuling & Jin, Yi & Yao, Kanghong & Ge, Zhenghao, 2018. "Performance enhancement of a trapped-vortex combustor for gas turbine engines using a novel hybrid-atomizer," Applied Energy, Elsevier, vol. 216(C), pages 286-295.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:268:y:2020:i:c:s0306261920304797. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.