IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v259y2020ics030626191931877x.html
   My bibliography  Save this article

Efficient multi-objective optimization of gear ratios and motor torque distribution for electric vehicles with two-motor and two-speed powertrain system

Author

Listed:
  • Kwon, Kihan
  • Seo, Minsik
  • Min, Seungjae

Abstract

In an electric vehicle (EV), a two-motor and two-speed powertrain system is superior to other powertrain systems in terms of the driving requirements, achieving an excellent dynamic performance and energy efficiency. Because the most important design specifications for a two-motor and two-speed powertrain are the motor torque distribution between the two motors, and the first and second gear ratios, these specifications should be optimized to improve both performance and efficiency as much as possible. To analyze such requirements, an EV model, including two-motor and two-speed powertrain system, was constructed. The acceleration time and energy consumption were employed as the evaluation criteria for the quantification of performance and efficiency, respectively, and the analysis results when changing the gear ratios and the torque distribution, show that these specifications significantly influence on the performance and efficiency. Therefore, an optimization of gear ratios and torque distribution is essential for achieving a superior powertrain system of an EV. Because of the trade-off relationship between the performance and efficiency, a multi-objective optimization problem is formulated to minimize the acceleration time and energy consumption. To decrease the excessive computational effort during a multi-objective optimization process, efficient surrogate models of each objective function were developed using an artificial neural network and an adaptive sampling method. The surrogate model-based optimization was performed, and the optimization results show a Pareto front that provides a variety of optimal solutions between the objective functions, as well as the validity of the surrogate model-based multi-objective optimization.

Suggested Citation

  • Kwon, Kihan & Seo, Minsik & Min, Seungjae, 2020. "Efficient multi-objective optimization of gear ratios and motor torque distribution for electric vehicles with two-motor and two-speed powertrain system," Applied Energy, Elsevier, vol. 259(C).
  • Handle: RePEc:eee:appene:v:259:y:2020:i:c:s030626191931877x
    DOI: 10.1016/j.apenergy.2019.114190
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S030626191931877X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2019.114190?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hongwen He & Rui Xiong & Jinxin Fan, 2011. "Evaluation of Lithium-Ion Battery Equivalent Circuit Models for State of Charge Estimation by an Experimental Approach," Energies, MDPI, vol. 4(4), pages 1-17, March.
    2. Polychronis Spanoudakis & Nikolaos C. Tsourveloudis & Lefteris Doitsidis & Emmanuel S. Karapidakis, 2019. "Experimental Research of Transmissions on Electric Vehicles’ Energy Consumption," Energies, MDPI, vol. 12(3), pages 1-15, January.
    3. Senqi Tan & Jue Yang & Xinxin Zhao & Tingting Hai & Wenming Zhang, 2018. "Gear Ratio Optimization of a Multi-Speed Transmission for Electric Dump Truck Operating on the Structure Route," Energies, MDPI, vol. 11(6), pages 1-17, May.
    4. Taljegard, M. & Göransson, L. & Odenberger, M. & Johnsson, F., 2019. "Impacts of electric vehicles on the electricity generation portfolio – A Scandinavian-German case study," Applied Energy, Elsevier, vol. 235(C), pages 1637-1650.
    5. Zhao, Mingjie & Shi, Junhui & Lin, Cheng, 2019. "Optimization of integrated energy management for a dual-motor coaxial coupling propulsion electric city bus," Applied Energy, Elsevier, vol. 243(C), pages 21-34.
    6. Ruan, Jiageng & Walker, Paul & Zhang, Nong, 2016. "A comparative study energy consumption and costs of battery electric vehicle transmissions," Applied Energy, Elsevier, vol. 165(C), pages 119-134.
    7. Ruan, Jiageng & Walker, Paul David & Zhang, Nong & Wu, Jinglai, 2017. "An investigation of hybrid energy storage system in multi-speed electric vehicle," Energy, Elsevier, vol. 140(P1), pages 291-306.
    8. Tu, Wei & Santi, Paolo & Zhao, Tianhong & He, Xiaoyi & Li, Qingquan & Dong, Lei & Wallington, Timothy J. & Ratti, Carlo, 2019. "Acceptability, energy consumption, and costs of electric vehicle for ride-hailing drivers in Beijing," Applied Energy, Elsevier, vol. 250(C), pages 147-160.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hong, Xianqian & Wu, Jinglai & Zhang, Nong & Wang, Bing, 2022. "Energy efficiency optimization of Simpson planetary gearset based dual-motor powertrains for electric vehicles," Energy, Elsevier, vol. 259(C).
    2. Caiyang Wei & Theo Hofman & Esin Ilhan Caarls, 2021. "Co-Design of CVT-Based Electric Vehicles," Energies, MDPI, vol. 14(7), pages 1-33, March.
    3. Stefano De Pinto & Pablo Camocardi & Christoforos Chatzikomis & Aldo Sorniotti & Francesco Bottiglione & Giacomo Mantriota & Pietro Perlo, 2020. "On the Comparison of 2- and 4-Wheel-Drive Electric Vehicle Layouts with Central Motors and Single- and 2-Speed Transmission Systems," Energies, MDPI, vol. 13(13), pages 1-24, June.
    4. Kwon, Kihan & Lee, Jung-Hwan & Lim, Sang-Kil, 2023. "Optimization of multi-speed transmission for electric vehicles based on electrical and mechanical efficiency analysis," Applied Energy, Elsevier, vol. 342(C).
    5. Peng Wu & Penghui Qiang & Tao Pan & Huaiquan Zang, 2022. "Multi-Objective Optimization of Gear Ratios of a Seamless Three-Speed Automated Manual Transmission for Electric Vehicles Considering Shift Performance," Energies, MDPI, vol. 15(11), pages 1-27, June.
    6. Md Ragib Ahssan & Mehran Ektesabi & Saman Gorji, 2023. "Evaluation of a Three-Parameter Gearshift Strategy for a Two-Speed Transmission System in Electric Vehicles," Energies, MDPI, vol. 16(5), pages 1-28, March.
    7. Xiaotao Fei & Yunwu Han & Shaw Voon Wong & Muhammad Amin Azman & Wenlong Shen, 2024. "Design and Testing of Innovative Type of Dual-Motor Drive Electric Wheel Loader," Energies, MDPI, vol. 17(7), pages 1-28, March.
    8. Jiang, Yue & Meng, Hao & Chen, Guanpeng & Yang, Congnan & Xu, Xiaojun & Zhang, Lei & Xu, Haijun, 2022. "Differential-steering based path tracking control and energy-saving torque distribution strategy of 6WID unmanned ground vehicle," Energy, Elsevier, vol. 254(PA).
    9. Lin, Xinyou & Li, Yalong & Zhang, Guangji, 2022. "Bi-objective optimization strategy of energy consumption and shift shock based driving cycle-aware bias coefficients for a novel dual-motor electric vehicle," Energy, Elsevier, vol. 249(C).
    10. Miranda, Matheus H.R. & Silva, Fabrício L. & Lourenço, Maria A.M. & Eckert, Jony J. & Silva, Ludmila C.A., 2022. "Vehicle drivetrain and fuzzy controller optimization using a planar dynamics simulation based on a real-world driving cycle," Energy, Elsevier, vol. 257(C).
    11. Chi T. P. Nguyen & Bảo-Huy Nguyễn & Minh C. Ta & João Pedro F. Trovão, 2023. "Dual-Motor Dual-Source High Performance EV: A Comprehensive Review," Energies, MDPI, vol. 16(20), pages 1-28, October.
    12. Zhou, Xingyu & Sun, Chao & Sun, Fengchun & Zhang, Chuntao, 2023. "Commuting-pattern-oriented stochastic optimization of electric powertrains for revealing contributions of topology modifications to the powertrain energy efficiency," Applied Energy, Elsevier, vol. 344(C).
    13. Kwon, Kihan & Jo, Junhyeong & Min, Seungjae, 2021. "Multi-objective gear ratio and shifting pattern optimization of multi-speed transmissions for electric vehicles considering variable transmission efficiency," Energy, Elsevier, vol. 236(C).
    14. Liao, Peng & Tang, Tie-Qiao & Liu, Ronghui & Huang, Hai-Jun, 2021. "An eco-driving strategy for electric vehicle based on the powertrain," Applied Energy, Elsevier, vol. 302(C).
    15. Gao, Bingzhao & Meng, Dele & Shi, Wentong & Cai, Wenqi & Dong, Shiying & Zhang, Yuanjian & Chen, Hong, 2022. "Topology optimization and the evolution trends of two-speed transmission of EVs," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hong, Xianqian & Wu, Jinglai & Zhang, Nong & Wang, Bing, 2022. "Energy efficiency optimization of Simpson planetary gearset based dual-motor powertrains for electric vehicles," Energy, Elsevier, vol. 259(C).
    2. Kwon, Kihan & Jo, Junhyeong & Min, Seungjae, 2021. "Multi-objective gear ratio and shifting pattern optimization of multi-speed transmissions for electric vehicles considering variable transmission efficiency," Energy, Elsevier, vol. 236(C).
    3. Andrea Di Martino & Seyed Mahdi Miraftabzadeh & Michela Longo, 2022. "Strategies for the Modelisation of Electric Vehicle Energy Consumption: A Review," Energies, MDPI, vol. 15(21), pages 1-20, October.
    4. Cha, Kyoung-Soo & Kim, Dong-Min & Jung, Young-Hoon & Lim, Myung-Seop, 2020. "Wound field synchronous motor with hybrid circuit for neighborhood electric vehicle traction improving fuel economy," Applied Energy, Elsevier, vol. 263(C).
    5. Md Ragib Ahssan & Mehran Ektesabi & Saman Gorji, 2023. "Evaluation of a Three-Parameter Gearshift Strategy for a Two-Speed Transmission System in Electric Vehicles," Energies, MDPI, vol. 16(5), pages 1-28, March.
    6. Md Ragib Ahssan & Mehran Ektesabi & Saman Gorji, 2020. "Gear Ratio Optimization along with a Novel Gearshift Scheduling Strategy for a Two-Speed Transmission System in Electric Vehicle," Energies, MDPI, vol. 13(19), pages 1-24, September.
    7. Tian, Yang & Zhang, Yahui & Li, Hongmin & Gao, Jinwu & Swen, Austin & Wen, Guilin, 2023. "Optimal sizing and energy management of a novel dual-motor powertrain for electric vehicles," Energy, Elsevier, vol. 275(C).
    8. Ruan, Jiageng & Song, Qiang & Yang, Weiwei, 2019. "The application of hybrid energy storage system with electrified continuously variable transmission in battery electric vehicle," Energy, Elsevier, vol. 183(C), pages 315-330.
    9. Lin, Xinyou & Li, Yalong & Zhang, Guangji, 2022. "Bi-objective optimization strategy of energy consumption and shift shock based driving cycle-aware bias coefficients for a novel dual-motor electric vehicle," Energy, Elsevier, vol. 249(C).
    10. Ying Yang & Zhenpo Wang & Shuo Wang & Ni Lin, 2022. "An Investigation of Opportunity Charging with Hybrid Energy Storage System on Electric Bus with Two-Speed Transmission," Sustainability, MDPI, vol. 14(19), pages 1-13, September.
    11. Kwon, Kihan & Lee, Jung-Hwan & Lim, Sang-Kil, 2023. "Optimization of multi-speed transmission for electric vehicles based on electrical and mechanical efficiency analysis," Applied Energy, Elsevier, vol. 342(C).
    12. Antti Ritari & Jari Vepsäläinen & Klaus Kivekäs & Kari Tammi & Heikki Laitinen, 2020. "Energy Consumption and Lifecycle Cost Analysis of Electric City Buses with Multispeed Gearboxes," Energies, MDPI, vol. 13(8), pages 1-21, April.
    13. Randive, Vaibhav & Subramanian, Shankar C. & Thondiyath, Asokan, 2021. "Design and analysis of a hybrid electric powertrain for military tracked vehicles," Energy, Elsevier, vol. 229(C).
    14. Yang, Weiwei & Ruan, Jiageng & Yang, Jue & Zhang, Nong, 2020. "Investigation of integrated uninterrupted dual input transmission and hybrid energy storage system for electric vehicles," Applied Energy, Elsevier, vol. 262(C).
    15. Maria Taljegard & Lisa Göransson & Mikael Odenberger & Filip Johnsson, 2021. "To Represent Electric Vehicles in Electricity Systems Modelling—Aggregated Vehicle Representation vs. Individual Driving Profiles," Energies, MDPI, vol. 14(3), pages 1-25, January.
    16. Sandra Castano-Solis & Daniel Serrano-Jimenez & Lucia Gauchia & Javier Sanz, 2017. "The Influence of BMSs on the Characterization and Modeling of Series and Parallel Li-Ion Packs," Energies, MDPI, vol. 10(3), pages 1-13, February.
    17. Stefano De Pinto & Pablo Camocardi & Christoforos Chatzikomis & Aldo Sorniotti & Francesco Bottiglione & Giacomo Mantriota & Pietro Perlo, 2020. "On the Comparison of 2- and 4-Wheel-Drive Electric Vehicle Layouts with Central Motors and Single- and 2-Speed Transmission Systems," Energies, MDPI, vol. 13(13), pages 1-24, June.
    18. Ming Cai & Weijie Chen & Xiaojun Tan, 2017. "Battery State-Of-Charge Estimation Based on a Dual Unscented Kalman Filter and Fractional Variable-Order Model," Energies, MDPI, vol. 10(10), pages 1-16, October.
    19. Ozkurt, Celil & Camci, Fatih & Atamuradov, Vepa & Odorry, Christopher, 2016. "Integration of sampling based battery state of health estimation method in electric vehicles," Applied Energy, Elsevier, vol. 175(C), pages 356-367.
    20. Thanh-Tung Nguyen & Abdul Basit Khan & Younghwi Ko & Woojin Choi, 2020. "An Accurate State of Charge Estimation Method for Lithium Iron Phosphate Battery Using a Combination of an Unscented Kalman Filter and a Particle Filter," Energies, MDPI, vol. 13(17), pages 1-15, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:259:y:2020:i:c:s030626191931877x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.