IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v259y2020ics0306261919318173.html
   My bibliography  Save this article

Long-term stability of carbon dioxide electrolysis in a large-scale flat-tube solid oxide electrolysis cell based on double-sided air electrodes

Author

Listed:
  • Lu, Lianmei
  • Liu, Wu
  • Wang, Jianxin
  • Wang, Yudong
  • Xia, Changrong
  • Zhou, Xiao-Dong
  • Chen, Ming
  • Guan, Wanbing

Abstract

Solid oxide electrolysis cell is a highly promising technology for CO2 electrolysis and has attracted wide attention. But the durability is insufficient by known designed structure of solid oxide electrolysis cell due to structure damage. In this work, a new flat-tube solid oxide electrolysis cell (SOEC) based on double-sided air electrodes with mechanically-strong redox properties and larger active area was proposed and applied to electrolysis of CO2, and its electrochemical performance and long-term durability were investigated. The results showed that the charging current density reaches −600 mA/cm2 at 1.5 V and 750 °C under H2/CO2 atmosphere. The CO2 conversion rate achieves 47.4% with energy conversation efficiency of 91.4% at the electrolysis voltage of 1.305 V under the charging current density of −400 mA/cm2, corresponding to 210 mL/min of CO production rate. This new cell architecture for CO2 electrolysis was stable at the current density of −300 mA/cm2 for 1910 h at 750 °C with a degradation rate of 4.89%/kh. The new flat-tube solid oxide electrolysis cell is capable to conduct CO2 electrolysis with high efficiency and long-term stability.

Suggested Citation

  • Lu, Lianmei & Liu, Wu & Wang, Jianxin & Wang, Yudong & Xia, Changrong & Zhou, Xiao-Dong & Chen, Ming & Guan, Wanbing, 2020. "Long-term stability of carbon dioxide electrolysis in a large-scale flat-tube solid oxide electrolysis cell based on double-sided air electrodes," Applied Energy, Elsevier, vol. 259(C).
  • Handle: RePEc:eee:appene:v:259:y:2020:i:c:s0306261919318173
    DOI: 10.1016/j.apenergy.2019.114130
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261919318173
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2019.114130?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kaur, Gurpreet & Kulkarni, Aniruddha P. & Giddey, Sarbjit & Badwal, Sukhvinder P.S., 2018. "Ceramic composite cathodes for CO2 conversion to CO in solid oxide electrolysis cells," Applied Energy, Elsevier, vol. 221(C), pages 131-138.
    2. Razbani, Omid & Wærnhus, Ivar & Assadi, Mohsen, 2013. "Experimental investigation of temperature distribution over a planar solid oxide fuel cell," Applied Energy, Elsevier, vol. 105(C), pages 155-160.
    3. Tamošiūnas, Andrius & Gimžauskaitė, Dovilė & Uscila, Rolandas & Aikas, Mindaugas, 2019. "Thermal arc plasma gasification of waste glycerol to syngas," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    4. Xu, Haoran & Maroto-Valer, M. Mercedes & Ni, Meng & Cao, Jun & Xuan, Jin, 2019. "Low carbon fuel production from combined solid oxide CO2 co-electrolysis and Fischer-Tropsch synthesis system: A modelling study," Applied Energy, Elsevier, vol. 242(C), pages 911-918.
    5. Krekel, Daniel & Samsun, Remzi Can & Peters, Ralf & Stolten, Detlef, 2018. "The separation of CO2 from ambient air – A techno-economic assessment," Applied Energy, Elsevier, vol. 218(C), pages 361-381.
    6. Mehran, Muhammad Taqi & Yu, Seong-Bin & Lee, Dong-Young & Hong, Jong-Eun & Lee, Seung-Bok & Park, Seok-Joo & Song, Rak-Hyun & Lim, Tak-Hyoung, 2018. "Production of syngas from H2O/CO2 by high-pressure coelectrolysis in tubular solid oxide cells," Applied Energy, Elsevier, vol. 212(C), pages 759-770.
    7. Chuancheng Duan & Robert Kee & Huayang Zhu & Neal Sullivan & Liangzhu Zhu & Liuzhen Bian & Dylan Jennings & Ryan O’Hayre, 2019. "Highly efficient reversible protonic ceramic electrochemical cells for power generation and fuel production," Nature Energy, Nature, vol. 4(3), pages 230-240, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liu, Zhao & Han, Beibei & Lu, Zhiyi & Guan, Wanbing & Li, Yuanyuan & Song, Changjiang & Chen, Liang & Singhal, Subhash C., 2021. "Efficiency and stability of hydrogen production from seawater using solid oxide electrolysis cells," Applied Energy, Elsevier, vol. 300(C).
    2. Khan, M.S. & Xu, X. & Knibbe, R. & Zhu, Z., 2021. "Air electrodes and related degradation mechanisms in solid oxide electrolysis and reversible solid oxide cells," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    3. Li, Chaolei & Wu, Anqi & Xi, Chengqiao & Guan, Wanbing & Chen, Liang & Singhal, Subhash C., 2022. "High reversible cycling performance of carbon dioxide electrolysis by flat-tube solid oxide cell," Applied Energy, Elsevier, vol. 314(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lee, Dong-Young & Mehran, Muhammad Taqi & Kim, Jonghwan & Kim, Sangcho & Lee, Seung-Bok & Song, Rak-Hyun & Ko, Eun-Yong & Hong, Jong-Eun & Huh, Joo-Youl & Lim, Tak-Hyoung, 2020. "Scaling up syngas production with controllable H2/CO ratio in a highly efficient, compact, and durable solid oxide coelectrolysis cell unit-bundle," Applied Energy, Elsevier, vol. 257(C).
    2. Chen, Daifen & Zeng, Qice & Su, Shichuan & Bi, Wuxi & Ren, Zhiqiang, 2013. "Geometric optimization of a 10-cell modular planar solid oxide fuel cell stack manifold," Applied Energy, Elsevier, vol. 112(C), pages 1100-1107.
    3. Fardadi, Mahshid & McLarty, Dustin F. & Jabbari, Faryar, 2016. "Investigation of thermal control for different SOFC flow geometries," Applied Energy, Elsevier, vol. 178(C), pages 43-55.
    4. Serdar Yilmaz & Bekir Kavici & Prakash Ramakrishnan & Cigdem Celen & Bahman Amini Horri, 2023. "Highly Conductive Cerium- and Neodymium-Doped Barium Zirconate Perovskites for Protonic Ceramic Fuel Cells," Energies, MDPI, vol. 16(11), pages 1-14, May.
    5. Sun, Yi & Qian, Tang & Zhu, Jingdong & Zheng, Nan & Han, Yu & Xiao, Gang & Ni, Meng & Xu, Haoran, 2023. "Dynamic simulation of a reversible solid oxide cell system for efficient H2 production and power generation," Energy, Elsevier, vol. 263(PA).
    6. Chen, Yanbo & Luo, Yu & Shi, Yixiang & Cai, Ningsheng, 2020. "Theoretical modeling of a pressurized tubular reversible solid oxide cell for methane production by co-electrolysis," Applied Energy, Elsevier, vol. 268(C).
    7. Chang, Wanhyuk & Kang, Eun Heui & Jeong, Heon Jun & Choi, Wonjoon & Shim, Joon Hyung, 2023. "Inkjet printing of perovskite ceramics for high-performance proton ceramic fuel cells," Energy, Elsevier, vol. 268(C).
    8. Silva-Mosqueda, Dulce María & Elizalde-Blancas, Francisco & Pumiglia, Davide & Santoni, Francesca & Boigues-Muñoz, Carlos & McPhail, Stephen J., 2019. "Intermediate temperature solid oxide fuel cell under internal reforming: Critical operating conditions, associated problems and their impact on the performance," Applied Energy, Elsevier, vol. 235(C), pages 625-640.
    9. Zuoqing Liu & Yuesheng Bai & Hainan Sun & Daqin Guan & Wenhuai Li & Wei-Hsiang Huang & Chih-Wen Pao & Zhiwei Hu & Guangming Yang & Yinlong Zhu & Ran Ran & Wei Zhou & Zongping Shao, 2024. "Synergistic dual-phase air electrode enables high and durable performance of reversible proton ceramic electrochemical cells," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    10. Zeng, Hongyu & Wang, Yuqing & Shi, Yixiang & Cai, Ningsheng & Yuan, Dazhong, 2018. "Highly thermal integrated heat pipe-solid oxide fuel cell," Applied Energy, Elsevier, vol. 216(C), pages 613-619.
    11. Moreira, Rui & Bimbela, Fernando & Gandía, Luis M. & Ferreira, Abel & Sánchez, Jose Luis & Portugal, António, 2021. "Oxidative steam reforming of glycerol. A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    12. Zaghloul, Mohamed A.S. & Mason, Jerry H. & Wang, Mohan & Buric, Michael & Peng, Zhaoqiang & Lee, Shiwoo & Ohodnicki, Paul & Abernathy, Harry & Chen, Kevin Peng, 2021. "High spatial resolution temperature profile measurements of solid-oxide fuel cells," Applied Energy, Elsevier, vol. 288(C).
    13. Balint Simon, 2023. "Material flows and embodied energy of direct air capture: A cradle‐to‐gate inventory of selected technologies," Journal of Industrial Ecology, Yale University, vol. 27(3), pages 646-661, June.
    14. Zeng, Zezhi & Qian, Yuping & Zhang, Yangjun & Hao, Changkun & Dan, Dan & Zhuge, Weilin, 2020. "A review of heat transfer and thermal management methods for temperature gradient reduction in solid oxide fuel cell (SOFC) stacks," Applied Energy, Elsevier, vol. 280(C).
    15. Ze Liu & Yufei Song & Xiaolu Xiong & Yuxuan Zhang & Jingzeng Cui & Jianqiu Zhu & Lili Li & Jing Zhou & Chuan Zhou & Zhiwei Hu & Guntae Kim & Francesco Ciucci & Zongping Shao & Jian-Qiang Wang & Linjua, 2023. "Sintering-induced cation displacement in protonic ceramics and way for its suppression," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    16. Perez-Trujillo, Juan Pedro & Elizalde-Blancas, Francisco & Della Pietra, Massimiliano & McPhail, Stephen J., 2018. "A numerical and experimental comparison of a single reversible molten carbonate cell operating in fuel cell mode and electrolysis mode," Applied Energy, Elsevier, vol. 226(C), pages 1037-1055.
    17. Reznicek, Evan P. & Braun, Robert J., 2020. "Reversible solid oxide cell systems for integration with natural gas pipeline and carbon capture infrastructure for grid energy management," Applied Energy, Elsevier, vol. 259(C).
    18. Zhang, Yongliang & Han, Minfang, 2019. "Energy storage and syngas production by switching cathode gas in nickel-yttria stabilized zirconia supported solid oxide cell," Applied Energy, Elsevier, vol. 241(C), pages 1-10.
    19. Marocco, Paolo & Ferrero, Domenico & Lanzini, Andrea & Santarelli, Massimo, 2019. "Benefits from heat pipe integration in H2/H2O fed SOFC systems," Applied Energy, Elsevier, vol. 241(C), pages 472-482.
    20. He, Zhongjie & Li, Hua & Birgersson, E., 2014. "Correlating variability of modeling parameters with non-isothermal stack performance: Monte Carlo simulation of a portable 3D planar solid oxide fuel cell stack," Applied Energy, Elsevier, vol. 136(C), pages 560-575.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:259:y:2020:i:c:s0306261919318173. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.