IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v230y2018icp734-749.html
   My bibliography  Save this article

Current status and challenges of the ammonia escape inhibition technologies in ammonia-based CO2 capture process

Author

Listed:
  • Wang, Fu
  • Zhao, Jun
  • Miao, He
  • Zhao, Jiapei
  • Zhang, Houcheng
  • Yuan, Jinliang
  • Yan, Jinyue

Abstract

CO2 capture using ammonia solvent is an alternative to the conventional amine-based CO2 capture technology. While ammonia escape is one of the main barrier limiting its implementation. The present work reviews the current status of ammonia escape mechanisms and its inhibition technologies. The chemistry of ammonia-based absorption and desorption are analyzed, and the mass transfer of the ammonia escape are presented and discussed. Most suppression approaches for ammonia slip are in lab- and bench-scale studies. The representative development of the pilot-scale tests involves NH3 abatement and recycling process and chilled ammonia process (CAP). Some other novel processes have been reported the potential to reduce ammonia slip significantly and relatively lower energy penalty, but some technical issues including the process modification and parameters optimization should be resolved to secure economic feasibility. Integration of different ammonia inhibition approaches is suggested for the future development of ammonia slip suppression process.

Suggested Citation

  • Wang, Fu & Zhao, Jun & Miao, He & Zhao, Jiapei & Zhang, Houcheng & Yuan, Jinliang & Yan, Jinyue, 2018. "Current status and challenges of the ammonia escape inhibition technologies in ammonia-based CO2 capture process," Applied Energy, Elsevier, vol. 230(C), pages 734-749.
  • Handle: RePEc:eee:appene:v:230:y:2018:i:c:p:734-749
    DOI: 10.1016/j.apenergy.2018.08.116
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261918312868
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2018.08.116?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mengxiang Fang & Qinhui Ma & Zhen Wang & Qunyang Xiang & Wenmin Jiang & Zhixiang Xia, 2015. "A novel method to recover ammonia loss in ammonia‐based CO 2 capture system: ammonia regeneration by vacuum membrane distillation," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 5(4), pages 487-498, August.
    2. Zhang, Minkai & Guo, Yincheng, 2013. "Rate based modeling of absorption and regeneration for CO2 capture by aqueous ammonia solution," Applied Energy, Elsevier, vol. 111(C), pages 142-152.
    3. Li, Kangkang & Yu, Hai & Qi, Guojie & Feron, Paul & Tade, Moses & Yu, Jingwen & Wang, Shujuan, 2015. "Rate-based modelling of combined SO2 removal and NH3 recycling integrated with an aqueous NH3-based CO2 capture process," Applied Energy, Elsevier, vol. 148(C), pages 66-77.
    4. Lichun Li & Wenfeng Han & Hai Yu & Haodong Tang, 2013. "CO 2 absorption by piperazine promoted aqueous ammonia solution: absorption kinetics and ammonia loss," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 3(3), pages 231-245, June.
    5. Ma, Shuangchen & Chen, Gongda & Zhu, Sijie & Han, Tingting & Yu, Weijing, 2016. "Mass transfer of ammonia escape and CO2 absorption in CO2 capture using ammonia solution in bubbling reactor," Applied Energy, Elsevier, vol. 162(C), pages 354-362.
    6. Kang, Charles A. & Brandt, Adam R. & Durlofsky, Louis J. & Jayaweera, Indira, 2016. "Assessment of advanced solvent-based post-combustion CO2 capture processes using a bi-objective optimization technique," Applied Energy, Elsevier, vol. 179(C), pages 1209-1219.
    7. Jingwen Yu & Shujuan Wang & Hai Yu, 2013. "Experimental studies on suppression of ammonia vaporization by additives," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 3(5), pages 415-422, October.
    8. Lee, Zhi Hua & Lee, Keat Teong & Bhatia, Subhash & Mohamed, Abdul Rahman, 2012. "Post-combustion carbon dioxide capture: Evolution towards utilization of nanomaterials," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 2599-2609.
    9. Shakerian, Farid & Kim, Ki-Hyun & Szulejko, Jan E. & Park, Jae-Woo, 2015. "A comparative review between amines and ammonia as sorptive media for post-combustion CO2 capture," Applied Energy, Elsevier, vol. 148(C), pages 10-22.
    10. Yokozeki, A. & Shiflett, Mark B., 2007. "Vapor-liquid equilibria of ammonia + ionic liquid mixtures," Applied Energy, Elsevier, vol. 84(12), pages 1258-1273, December.
    11. Hanak, Dawid P. & Biliyok, Chechet & Manovic, Vasilije, 2015. "Efficiency improvements for the coal-fired power plant retrofit with CO2 capture plant using chilled ammonia process," Applied Energy, Elsevier, vol. 151(C), pages 258-272.
    12. Chu, Fengming & Liu, Yifang & Yang, Lijun & Du, Xiaoze & Yang, Yongping, 2017. "Ammonia escape mass transfer and heat transfer characteristics of CO2 absorption in packed absorbing column," Applied Energy, Elsevier, vol. 205(C), pages 1596-1604.
    13. Jiang, Kaiqi & Li, Kangkang & Yu, Hai & Chen, Zuliang & Wardhaugh, Leigh & Feron, Paul, 2017. "Advancement of ammonia based post-combustion CO2 capture using the advanced flash stripper process," Applied Energy, Elsevier, vol. 202(C), pages 496-506.
    14. Yang, Jie & Yu, Xinhai & Yan, Jinyue & Tu, Shan-Tung & Dahlquist, Erik, 2013. "Effects of SO2 on CO2 capture using a hollow fiber membrane contactor," Applied Energy, Elsevier, vol. 112(C), pages 755-764.
    15. Wang, Fu & Zhao, Jun & Li, Hailong & Deng, Shuai & Yan, Jinyue, 2017. "Preliminary experimental study of post-combustion carbon capture integrated with solar thermal collectors," Applied Energy, Elsevier, vol. 185(P2), pages 1471-1480.
    16. Lu, Jian-Gang & Lu, Chun-Ting & Chen, Yue & Gao, Liu & Zhao, Xin & Zhang, Hui & Xu, Zheng-Wen, 2014. "CO2 capture by membrane absorption coupling process: Application of ionic liquids," Applied Energy, Elsevier, vol. 115(C), pages 573-581.
    17. Chu, Fengming & Yang, Lijun & Du, Xiaoze & Yang, Yongping, 2017. "Mass transfer and energy consumption for CO2 absorption by ammonia solution in bubble column," Applied Energy, Elsevier, vol. 190(C), pages 1068-1080.
    18. Bonalumi, Davide & Giuffrida, Antonio, 2016. "Investigations of an air-blown integrated gasification combined cycle fired with high-sulphur coal with post-combustion carbon capture by aqueous ammonia," Energy, Elsevier, vol. 117(P2), pages 439-449.
    19. Lv, Yuexia & Yu, Xinhai & Tu, Shan-Tung & Yan, Jinyue & Dahlquist, Erik, 2012. "Experimental studies on simultaneous removal of CO2 and SO2 in a polypropylene hollow fiber membrane contactor," Applied Energy, Elsevier, vol. 97(C), pages 283-288.
    20. Pellegrini, G. & Strube, R. & Manfrida, G., 2010. "Comparative study of chemical absorbents in postcombustion CO2 capture," Energy, Elsevier, vol. 35(2), pages 851-857.
    21. Ma, Shuangchen & Chen, Gongda & Zhu, Sijie & Wen, Jiaqi & Gao, Ran & Ma, Lan & Chai, Jin, 2016. "Experimental study of mixed additive of Ni(II) and piperazine on ammonia escape in CO2 capture using ammonia solution," Applied Energy, Elsevier, vol. 169(C), pages 597-606.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sefa Yalcin & Alp Er Ş. Konukman & Adnan Midilli, 2020. "A perspective on fossil fuel based flue gas emission reduction technologies," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 10(4), pages 664-677, August.
    2. Jiang, Kaiqi & Yu, Hai & Chen, Linghong & Fang, Mengxiang & Azzi, Merched & Cottrell, Aaron & Li, Kangkang, 2020. "An advanced, ammonia-based combined NOx/SOx/CO2 emission control process towards a low-cost, clean coal technology," Applied Energy, Elsevier, vol. 260(C).
    3. Shen, Yao & Chen, Han & Wang, Junliang & Zhang, Shihan & Jiang, Chenkai & Ye, Jiexu & Wang, Lidong & Chen, Jianmeng, 2020. "Two-stage interaction performance of CO2 absorption into biphasic solvents: Mechanism analysis, quantum calculation and energy consumption," Applied Energy, Elsevier, vol. 260(C).
    4. Wang, Fu & Deng, Shuai & Zhang, Houcheng & Wang, Jiatang & Zhao, Jiapei & Miao, He & Yuan, Jinliang & Yan, Jinyue, 2020. "A comprehensive review on high-temperature fuel cells with carbon capture," Applied Energy, Elsevier, vol. 275(C).
    5. Xie, Weiyi & Chen, Xiaoping & Ma, Jiliang & Liu, Daoyin & Cai, Tianyi & Wu, Ye, 2019. "Energy analyses and process integration of coal-fired power plant with CO2 capture using sodium-based dry sorbents," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    6. Zhang, Xiaowen & Huang, Yufei & Gao, Hongxia & Luo, Xiao & Liang, Zhiwu & Tontiwachwuthikul, Paitoon, 2019. "Zeolite catalyst-aided tri-solvent blend amine regeneration: An alternative pathway to reduce the energy consumption in amine-based CO2 capture process," Applied Energy, Elsevier, vol. 240(C), pages 827-841.
    7. Li, Hongwei & Tang, Zhigang & Li, Na & Cui, Longpeng & Mao, Xian-zhong, 2020. "Mechanism and process study on steel slag enhancement for CO2 capture by seawater," Applied Energy, Elsevier, vol. 276(C).
    8. Chisalita, Dora-Andreea & Petrescu, Letitia & Cormos, Calin-Cristian, 2020. "Environmental evaluation of european ammonia production considering various hydrogen supply chains," Renewable and Sustainable Energy Reviews, Elsevier, vol. 130(C).
    9. Wang, Likun & Bliznakov, Stoyan & Isseroff, Rebecca & Zhou, Yuchen & Zuo, Xianghao & Raut, Aniket & Wang, Wanhua & Cuiffo, Michael & Kim, Taejin & Rafailovich, Miriam H., 2020. "Enhancing proton exchange membrane fuel cell performance via graphene oxide surface synergy," Applied Energy, Elsevier, vol. 261(C).
    10. Hou, Lianhua & Yu, Zhichao & Luo, Xia & Wu, Songtao, 2022. "Self-sealing of caprocks during CO2 geological sequestration," Energy, Elsevier, vol. 252(C).
    11. Arshad, Nahyan & Alhajaj, Ahmed, 2023. "Process synthesis for amine-based CO2 capture from combined cycle gas turbine power plant," Energy, Elsevier, vol. 274(C).
    12. Chu, Fengming & Gao, Qianhong & Li, Shang & Yang, Guoan & Luo, Yan, 2020. "Mass transfer characteristic of ammonia escape and energy penalty analysis in the regeneration process," Applied Energy, Elsevier, vol. 258(C).
    13. Nejati, Kaveh & Aghel, Babak, 2023. "Utilizing fly ash from a power plant company for CO2 capture in a microchannel," Energy, Elsevier, vol. 278(PB).
    14. Zhang, Shihan & Shen, Yao & Wang, Lidong & Chen, Jianmeng & Lu, Yongqi, 2019. "Phase change solvents for post-combustion CO2 capture: Principle, advances, and challenges," Applied Energy, Elsevier, vol. 239(C), pages 876-897.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chu, Fengming & Yang, Lijun & Du, Xiaoze & Yang, Yongping, 2017. "Mass transfer and energy consumption for CO2 absorption by ammonia solution in bubble column," Applied Energy, Elsevier, vol. 190(C), pages 1068-1080.
    2. Yifang Liu & Fengming Chu & Lijun Yang & Xiaoze Du & Yongping Yang, 2018. "CO2 absorption characteristics in a random packed column with various geometric structures and working conditions," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 8(1), pages 120-132, February.
    3. Chu, Fengming & Liu, Yifang & Yang, Lijun & Du, Xiaoze & Yang, Yongping, 2017. "Ammonia escape mass transfer and heat transfer characteristics of CO2 absorption in packed absorbing column," Applied Energy, Elsevier, vol. 205(C), pages 1596-1604.
    4. Qi, Guojie & Wang, Shujuan, 2017. "Experimental study and rate-based modeling on combined CO2 and SO2 absorption using aqueous NH3 in packed column," Applied Energy, Elsevier, vol. 206(C), pages 1532-1543.
    5. N.Borhani, Tohid & Wang, Meihong, 2019. "Role of solvents in CO2 capture processes: The review of selection and design methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
    6. Chu, Fengming & Gao, Qianhong & Li, Shang & Yang, Guoan & Luo, Yan, 2020. "Mass transfer characteristic of ammonia escape and energy penalty analysis in the regeneration process," Applied Energy, Elsevier, vol. 258(C).
    7. Wang, Fu & Zhao, Jun & Zhang, Houcheng & Miao, He & Zhao, Jiapei & Wang, Jiatang & Yuan, Jinliang & Yan, Jinyue, 2018. "Efficiency evaluation of a coal-fired power plant integrated with chilled ammonia process using an absorption refrigerator," Applied Energy, Elsevier, vol. 230(C), pages 267-276.
    8. Song, Chunfeng & Xie, Meilian & Qiu, Yiting & Liu, Qingling & Sun, Luchang & Wang, Kailiang & Kansha, Yasuki, 2019. "Integration of CO2 absorption with biological transformation via using rich ammonia solution as a nutrient source for microalgae cultivation," Energy, Elsevier, vol. 179(C), pages 618-627.
    9. Xu, Yin & Jin, Baosheng & Zhao, Yongling & Hu, Eric J. & Chen, Xiaole & Li, Xiaochuan, 2018. "Numerical simulation of aqueous ammonia-based CO2 absorption in a sprayer tower: An integrated model combining gas-liquid hydrodynamics and chemistry," Applied Energy, Elsevier, vol. 211(C), pages 318-333.
    10. Ma, Shuangchen & Chen, Gongda & Zhu, Sijie & Wen, Jiaqi & Gao, Ran & Ma, Lan & Chai, Jin, 2016. "Experimental study of mixed additive of Ni(II) and piperazine on ammonia escape in CO2 capture using ammonia solution," Applied Energy, Elsevier, vol. 169(C), pages 597-606.
    11. Cheng, Chin-hung & Li, Kangkang & Yu, Hai & Jiang, Kaiqi & Chen, Jian & Feron, Paul, 2018. "Amine-based post-combustion CO2 capture mediated by metal ions: Advancement of CO2 desorption using copper ions," Applied Energy, Elsevier, vol. 211(C), pages 1030-1038.
    12. Lin, Yi-Feng & Ko, Chia-Chieh & Chen, Chien-Hua & Tung, Kuo-Lun & Chang, Kai-Shiun & Chung, Tsair-Wang, 2014. "Sol–gel preparation of polymethylsilsesquioxane aerogel membranes for CO2 absorption fluxes in membrane contactors," Applied Energy, Elsevier, vol. 129(C), pages 25-31.
    13. Zhang, Xiaowen & Zhang, Xin & Liu, Helei & Li, Wensheng & Xiao, Min & Gao, Hongxia & Liang, Zhiwu, 2017. "Reduction of energy requirement of CO2 desorption from a rich CO2-loaded MEA solution by using solid acid catalysts," Applied Energy, Elsevier, vol. 202(C), pages 673-684.
    14. Lin, Yi-Feng & Chang, Jun-Min & Ye, Qian & Tung, Kuo-Lun, 2015. "Hydrophobic fluorocarbon-modified silica aerogel tubular membranes with excellent CO2 recovery ability in membrane contactors," Applied Energy, Elsevier, vol. 154(C), pages 21-25.
    15. Sreenivasulu, B. & Gayatri, D.V. & Sreedhar, I. & Raghavan, K.V., 2015. "A journey into the process and engineering aspects of carbon capture technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 1324-1350.
    16. Yang, Yan & Wen, Chuang & Wang, Shuli & Feng, Yuqing, 2014. "Theoretical and numerical analysis on pressure recovery of supersonic separators for natural gas dehydration," Applied Energy, Elsevier, vol. 132(C), pages 248-253.
    17. Wu, Xiao M. & Qin, Zhen & Yu, Yun S. & Zhang, Zao X., 2018. "Experimental and numerical study on CO2 absorption mass transfer enhancement for a diameter-varying spray tower," Applied Energy, Elsevier, vol. 225(C), pages 367-379.
    18. Rashidi, Hamed & Rasouli, Parvaneh & Azimi, Hossein, 2022. "A green vapor suppressing agent for aqueous ammonia carbon dioxide capture solvent: Microcontactor mass transfer study," Energy, Elsevier, vol. 244(PA).
    19. Song, Chunfeng & Liu, Qingling & Ji, Na & Deng, Shuai & Zhao, Jun & Kitamura, Yutaka, 2017. "Natural gas purification by heat pump assisted MEA absorption process," Applied Energy, Elsevier, vol. 204(C), pages 353-361.
    20. Qi, Guojie & Wang, Shujuan, 2017. "Thermodynamic modeling of NH3-CO2-SO2-K2SO4-H2O system for combined CO2 and SO2 capture using aqueous NH3," Applied Energy, Elsevier, vol. 191(C), pages 549-558.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:230:y:2018:i:c:p:734-749. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.