IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v213y2018icp375-383.html
   My bibliography  Save this article

Temperature rise prediction of lithium-ion battery suffering external short circuit for all-climate electric vehicles application

Author

Listed:
  • Chen, Zeyu
  • Xiong, Rui
  • Lu, Jiahuan
  • Li, Xinggang

Abstract

External short circuit (ESC) is a severe fault that can cause the large current and high temperature of lithium-ion batteries (LiBs) immediately. Temperature rise prediction is crucial for LiB safety management in an all-climate electric vehicles application because many disastrous consequences are caused by high temperature. This study mainly investigates the ESC-caused temperature rise characteristics of LiB, and proposes an online prediction approach of the maximum temperature rise. Three original contributions are made: (1) Abusing tests of LiBs under ESC are conducted at varying ambient temperatures, and the influences of battery state of charge (SOC) and ambient temperature on the maximum temperature rise are revealed. (2) Characteristics of temperature rises are analysed, therein finding that the heat generation of LiBs caused by ESC presents two modes: Joule heat-dominant mode and reaction heat/Joule heat blended mode; leakage is an external manifestation of the latter. (3) Two heat generation modes are proved to be linearly separable at temperature rise discharge capacity plane, and then a two-step prediction approach of maximum temperature rise is proposed based on support vector machine. Finally, the presented approach is validated by the experimental data. The maximum temperature rise can be predicted up to 22.3 s ahead of time and very precise prediction results are obtained, where the mean prediction error for the eight test cells is 3.05%.

Suggested Citation

  • Chen, Zeyu & Xiong, Rui & Lu, Jiahuan & Li, Xinggang, 2018. "Temperature rise prediction of lithium-ion battery suffering external short circuit for all-climate electric vehicles application," Applied Energy, Elsevier, vol. 213(C), pages 375-383.
  • Handle: RePEc:eee:appene:v:213:y:2018:i:c:p:375-383
    DOI: 10.1016/j.apenergy.2018.01.068
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261918300771
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2018.01.068?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Tanim, Tanvir R. & Rahn, Christopher D. & Wang, Chao-Yang, 2015. "State of charge estimation of a lithium ion cell based on a temperature dependent and electrolyte enhanced single particle model," Energy, Elsevier, vol. 80(C), pages 731-739.
    2. Xiong, Rui & Sun, Fengchun & Chen, Zheng & He, Hongwen, 2014. "A data-driven multi-scale extended Kalman filtering based parameter and state estimation approach of lithium-ion olymer battery in electric vehicles," Applied Energy, Elsevier, vol. 113(C), pages 463-476.
    3. J.-M. Tarascon & M. Armand, 2001. "Issues and challenges facing rechargeable lithium batteries," Nature, Nature, vol. 414(6861), pages 359-367, November.
    4. Omar, Noshin & Monem, Mohamed Abdel & Firouz, Yousef & Salminen, Justin & Smekens, Jelle & Hegazy, Omar & Gaulous, Hamid & Mulder, Grietus & Van den Bossche, Peter & Coosemans, Thierry & Van Mierlo, J, 2014. "Lithium iron phosphate based battery – Assessment of the aging parameters and development of cycle life model," Applied Energy, Elsevier, vol. 113(C), pages 1575-1585.
    5. Xiong, Rui & Yu, Quanqing & Wang, Le Yi & Lin, Cheng, 2017. "A novel method to obtain the open circuit voltage for the state of charge of lithium ion batteries in electric vehicles by using H infinity filter," Applied Energy, Elsevier, vol. 207(C), pages 346-353.
    6. Xiong, Rui & Cao, Jiayi & Yu, Quanqing, 2018. "Reinforcement learning-based real-time power management for hybrid energy storage system in the plug-in hybrid electric vehicle," Applied Energy, Elsevier, vol. 211(C), pages 538-548.
    7. Chao-Yang Wang & Guangsheng Zhang & Shanhai Ge & Terrence Xu & Yan Ji & Xiao-Guang Yang & Yongjun Leng, 2016. "Lithium-ion battery structure that self-heats at low temperatures," Nature, Nature, vol. 529(7587), pages 515-518, January.
    8. Chen, Zeyu & Xiong, Rui & Tian, Jinpeng & Shang, Xiong & Lu, Jiahuan, 2016. "Model-based fault diagnosis approach on external short circuit of lithium-ion battery used in electric vehicles," Applied Energy, Elsevier, vol. 184(C), pages 365-374.
    9. Patil, Meru A. & Tagade, Piyush & Hariharan, Krishnan S. & Kolake, Subramanya M. & Song, Taewon & Yeo, Taejung & Doo, Seokgwang, 2015. "A novel multistage Support Vector Machine based approach for Li ion battery remaining useful life estimation," Applied Energy, Elsevier, vol. 159(C), pages 285-297.
    10. Xiong, Rui & Tian, Jinpeng & Mu, Hao & Wang, Chun, 2017. "A systematic model-based degradation behavior recognition and health monitoring method for lithium-ion batteries," Applied Energy, Elsevier, vol. 207(C), pages 372-383.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xiong, Rui & Li, Linlin & Li, Zhirun & Yu, Quanqing & Mu, Hao, 2018. "An electrochemical model based degradation state identification method of Lithium-ion battery for all-climate electric vehicles application," Applied Energy, Elsevier, vol. 219(C), pages 264-275.
    2. Jichao Hong & Zhenpo Wang & Peng Liu, 2017. "Big-Data-Based Thermal Runaway Prognosis of Battery Systems for Electric Vehicles," Energies, MDPI, vol. 10(7), pages 1-16, July.
    3. Peng Liu & Zhenyu Sun & Zhenpo Wang & Jin Zhang, 2018. "Entropy-Based Voltage Fault Diagnosis of Battery Systems for Electric Vehicles," Energies, MDPI, vol. 11(1), pages 1-15, January.
    4. da Silva, Samuel Filgueira & Eckert, Jony Javorski & Corrêa, Fernanda Cristina & Silva, Fabrício Leonardo & Silva, Ludmila C.A. & Dedini, Franco Giuseppe, 2022. "Dual HESS electric vehicle powertrain design and fuzzy control based on multi-objective optimization to increase driving range and battery life cycle," Applied Energy, Elsevier, vol. 324(C).
    5. Yang, Ruixin & Xiong, Rui & He, Hongwen & Mu, Hao & Wang, Chun, 2017. "A novel method on estimating the degradation and state of charge of lithium-ion batteries used for electrical vehicles," Applied Energy, Elsevier, vol. 207(C), pages 336-345.
    6. Muhammad Umair Ali & Amad Zafar & Sarvar Hussain Nengroo & Sadam Hussain & Muhammad Junaid Alvi & Hee-Je Kim, 2019. "Towards a Smarter Battery Management System for Electric Vehicle Applications: A Critical Review of Lithium-Ion Battery State of Charge Estimation," Energies, MDPI, vol. 12(3), pages 1-33, January.
    7. Mu, Hao & Xiong, Rui & Zheng, Hongfei & Chang, Yuhua & Chen, Zeyu, 2017. "A novel fractional order model based state-of-charge estimation method for lithium-ion battery," Applied Energy, Elsevier, vol. 207(C), pages 384-393.
    8. Hong Zhang & Zhuang Xing & Jiajian Song & Qiangqiang Yang, 2018. "Development and Test Application of an Auxiliary Power-Integrated System," Energies, MDPI, vol. 11(1), pages 1-18, January.
    9. Mingchun Liu & Feihong Gu & Juhua Huang & Changjiang Wang & Ming Cao, 2017. "Integration Design and Optimization Control of a Dynamic Vibration Absorber for Electric Wheels with In-Wheel Motor," Energies, MDPI, vol. 10(12), pages 1-23, December.
    10. Ashleigh Townsend & Rupert Gouws, 2022. "A Comparative Review of Lead-Acid, Lithium-Ion and Ultra-Capacitor Technologies and Their Degradation Mechanisms," Energies, MDPI, vol. 15(13), pages 1-29, July.
    11. Xiaopeng Tang & Ke Yao & Boyang Liu & Wengui Hu & Furong Gao, 2018. "Long-Term Battery Voltage, Power, and Surface Temperature Prediction Using a Model-Based Extreme Learning Machine," Energies, MDPI, vol. 11(1), pages 1-16, January.
    12. Zepeng Gao & Sizhong Chen & Yuzhuang Zhao & Jinrui Nan, 2018. "Height Adjustment of Vehicles Based on a Static Equilibrium Position State Observation Algorithm," Energies, MDPI, vol. 11(2), pages 1-26, February.
    13. Bumin Meng & Yaonan Wang & Jianxu Mao & Jianwen Liu & Guochang Xu & Jian Dai, 2018. "Using SoC Online Correction Method Based on Parameter Identification to Optimize the Operation Range of NI-MH Battery for Electric Boat," Energies, MDPI, vol. 11(3), pages 1-20, March.
    14. Wang, Ju & Xiong, Rui & Li, Linlin & Fang, Yu, 2018. "A comparative analysis and validation for double-filters-based state of charge estimators using battery-in-the-loop approach," Applied Energy, Elsevier, vol. 229(C), pages 648-659.
    15. Li, Zhirun & Xiong, Rui & Mu, Hao & He, Hongwen & Wang, Chun, 2017. "A novel parameter and state-of-charge determining method of lithium-ion battery for electric vehicles," Applied Energy, Elsevier, vol. 207(C), pages 363-371.
    16. Xiong, Rui & Duan, Yanzhou & Cao, Jiayi & Yu, Quanqing, 2018. "Battery and ultracapacitor in-the-loop approach to validate a real-time power management method for an all-climate electric vehicle," Applied Energy, Elsevier, vol. 217(C), pages 153-165.
    17. Aijuan Li & Wanzhong Zhao & Xibo Wang & Xuyun Qiu, 2018. "ACT-R Cognitive Model Based Trajectory Planning Method Study for Electric Vehicle’s Active Obstacle Avoidance System," Energies, MDPI, vol. 11(1), pages 1-21, January.
    18. Lin, Cheng & Yu, Quanqing & Xiong, Rui & Wang, Le Yi, 2017. "A study on the impact of open circuit voltage tests on state of charge estimation for lithium-ion batteries," Applied Energy, Elsevier, vol. 205(C), pages 892-902.
    19. Mingjie Zhao & Junhui Shi & Cheng Lin & Junzhi Zhang, 2018. "Application-Oriented Optimal Shift Schedule Extraction for a Dual-Motor Electric Bus with Automated Manual Transmission," Energies, MDPI, vol. 11(2), pages 1-16, February.
    20. Rujian Fu & Xuan Zhou & Hengbin Fan & Douglas Blaisdell & Ajay Jagadale & Xi Zhang & Rui Xiong, 2017. "Comparison of Lithium-Ion Anode Materials Using an Experimentally Verified Physics-Based Electrochemical Model," Energies, MDPI, vol. 10(12), pages 1-20, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:213:y:2018:i:c:p:375-383. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.