IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v164y2016icp162-174.html
   My bibliography  Save this article

Performance optimization of a spark-ignition turbocharged VVA engine under knock limited operation

Author

Listed:
  • De Bellis, Vincenzo

Abstract

Various solutions are being proposed to improve the performance of spark-ignition internal combustion engines. A very effective approach is the downsizing technique, which allows the reducing of the Brake Specific Fuel Consumption (BSFC) at part load, while maintaining the required performance at high load. On the other hand, the above technique may cause substantial BSFC detrainments at high load because of the onset of knocking combustions.

Suggested Citation

  • De Bellis, Vincenzo, 2016. "Performance optimization of a spark-ignition turbocharged VVA engine under knock limited operation," Applied Energy, Elsevier, vol. 164(C), pages 162-174.
  • Handle: RePEc:eee:appene:v:164:y:2016:i:c:p:162-174
    DOI: 10.1016/j.apenergy.2015.11.097
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261915015470
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2015.11.097?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wei, Haiqiao & Zhu, Tianyu & Shu, Gequn & Tan, Linlin & Wang, Yuesen, 2012. "Gasoline engine exhaust gas recirculation – A review," Applied Energy, Elsevier, vol. 99(C), pages 534-544.
    2. Zhao, Jinxing & Xu, Min, 2013. "Fuel economy optimization of an Atkinson cycle engine using genetic algorithm," Applied Energy, Elsevier, vol. 105(C), pages 335-348.
    3. Zhen, Xudong & Wang, Yang & Xu, Shuaiqing & Zhu, Yongsheng & Tao, Chengjun & Xu, Tao & Song, Mingzhi, 2012. "The engine knock analysis – An overview," Applied Energy, Elsevier, vol. 92(C), pages 628-636.
    4. Lattimore, Thomas & Wang, Chongming & Xu, Hongming & Wyszynski, Miroslaw L. & Shuai, Shijin, 2016. "Investigation of EGR Effect on Combustion and PM Emissions in a DISI Engine," Applied Energy, Elsevier, vol. 161(C), pages 256-267.
    5. Dalla Nora, Macklini & Zhao, Hua, 2015. "High load performance and combustion analysis of a four-valve direct injection gasoline engine running in the two-stroke cycle," Applied Energy, Elsevier, vol. 159(C), pages 117-131.
    6. Fontana, G. & Galloni, E., 2009. "Variable valve timing for fuel economy improvement in a small spark-ignition engine," Applied Energy, Elsevier, vol. 86(1), pages 96-105, January.
    7. D'Errico, G. & Cerri, T. & Pertusi, G., 2011. "Multi-objective optimization of internal combustion engine by means of 1D fluid-dynamic models," Applied Energy, Elsevier, vol. 88(3), pages 767-777, March.
    8. Mikalsen, R. & Wang, Y.D. & Roskilly, A.P., 2009. "A comparison of Miller and Otto cycle natural gas engines for small scale CHP applications," Applied Energy, Elsevier, vol. 86(6), pages 922-927, June.
    9. Zhao, Jinxing & Xu, Min & Li, Mian & Wang, Bin & Liu, Shuangzhai, 2012. "Design and optimization of an Atkinson cycle engine with the Artificial Neural Network Method," Applied Energy, Elsevier, vol. 92(C), pages 492-502.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chen, Ceyuan & Pal, Pinaki & Ameen, Muhsin & Feng, Dengquan & Wei, Haiqiao, 2020. "Large-eddy simulation study on cycle-to-cycle variation of knocking combustion in a spark-ignition engine," Applied Energy, Elsevier, vol. 261(C).
    2. Bendu, Harisankar & Deepak, B.B.V.L. & Murugan, S., 2017. "Multi-objective optimization of ethanol fuelled HCCI engine performance using hybrid GRNN–PSO," Applied Energy, Elsevier, vol. 187(C), pages 601-611.
    3. Yu, Xunzhao & Zhu, Ling & Wang, Yan & Filev, Dimitar & Yao, Xin, 2022. "Internal combustion engine calibration using optimization algorithms," Applied Energy, Elsevier, vol. 305(C).
    4. Costa, M. & Catapano, F. & Sementa, P. & Sorge, U. & Vaglieco, B.M., 2016. "Mixture preparation and combustion in a GDI engine under stoichiometric or lean charge: an experimental and numerical study on an optically accessible engine," Applied Energy, Elsevier, vol. 180(C), pages 86-103.
    5. Duan, Xiongbo & Liu, Jingping & Yao, Jun & Chen, Zheng & Wu, Cheng & Chen, Ceyuan & Dong, Hao, 2018. "Performance, combustion and knock assessment of a high compression ratio and lean-burn heavy-duty spark-ignition engine fuelled with n-butane and liquefied methane gas blend," Energy, Elsevier, vol. 158(C), pages 256-268.
    6. Xu, Han & Yao, Anren & Yao, Chunde & Gao, Jian, 2017. "Investigation of energy transformation and damage effect under severe knock of engines," Applied Energy, Elsevier, vol. 203(C), pages 506-521.
    7. Vafamehr, Hassan & Cairns, Alasdair & Sampson, Ojon & Koupaie, Mohammadmohsen Moslemin, 2016. "The competing chemical and physical effects of transient fuel enrichment on heavy knock in an optical spark ignition engine," Applied Energy, Elsevier, vol. 179(C), pages 687-697.
    8. Li, Yangtao & Khajepour, Amir & Devaud, Cécile, 2018. "Realization of variable Otto-Atkinson cycle using variable timing hydraulic actuated valve train for performance and efficiency improvements in unthrottled gasoline engines," Applied Energy, Elsevier, vol. 222(C), pages 199-215.
    9. Rami Y. Dahham & Haiqiao Wei & Jiaying Pan, 2022. "Improving Thermal Efficiency of Internal Combustion Engines: Recent Progress and Remaining Challenges," Energies, MDPI, vol. 15(17), pages 1-60, August.
    10. Chen, Lin & Pan, Jiaying & Liu, Changwen & Shu, Gequn & Wei, Haiqiao, 2020. "Effect of rapid combustion on engine performance and knocking characteristics under different spark strategy conditions," Energy, Elsevier, vol. 192(C).
    11. Xu, Han & Weng, Chunsheng & Gao, Jian & Yao, Chunde, 2020. "The effect of energy intensification on the formation of severe knock in internal combustion engines," Applied Energy, Elsevier, vol. 266(C).
    12. Zhao, Jinxing, 2017. "Research and application of over-expansion cycle (Atkinson and Miller) engines – A review," Applied Energy, Elsevier, vol. 185(P1), pages 300-319.
    13. Pan, Jiaying & Wei, Haiqiao & Shu, Gequn & Pan, Mingzhang & Feng, Dengquan & Li, Nan, 2017. "LES analysis for auto-ignition induced abnormal combustion based on a downsized SI engine," Applied Energy, Elsevier, vol. 191(C), pages 183-192.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Yangtao & Khajepour, Amir & Devaud, Cécile & Liu, Kaimin, 2017. "Power and fuel economy optimizations of gasoline engines using hydraulic variable valve actuation system," Applied Energy, Elsevier, vol. 206(C), pages 577-593.
    2. Zhao, Jinxing, 2017. "Research and application of over-expansion cycle (Atkinson and Miller) engines – A review," Applied Energy, Elsevier, vol. 185(P1), pages 300-319.
    3. Li, Yangtao & Khajepour, Amir & Devaud, Cécile, 2018. "Realization of variable Otto-Atkinson cycle using variable timing hydraulic actuated valve train for performance and efficiency improvements in unthrottled gasoline engines," Applied Energy, Elsevier, vol. 222(C), pages 199-215.
    4. Tadros, M. & Ventura, M. & Guedes Soares, C., 2019. "Optimization procedure to minimize fuel consumption of a four-stroke marine turbocharged diesel engine," Energy, Elsevier, vol. 168(C), pages 897-908.
    5. Bozza, Fabio & De Bellis, Vincenzo & Teodosio, Luigi, 2016. "Potentials of cooled EGR and water injection for knock resistance and fuel consumption improvements of gasoline engines," Applied Energy, Elsevier, vol. 169(C), pages 112-125.
    6. Teodosio, Luigi & Pirrello, Dino & Berni, Fabio & De Bellis, Vincenzo & Lanzafame, Rosario & D'Adamo, Alessandro, 2018. "Impact of intake valve strategies on fuel consumption and knock tendency of a spark ignition engine," Applied Energy, Elsevier, vol. 216(C), pages 91-104.
    7. Zhao, Jinxing & Xu, Min, 2013. "Fuel economy optimization of an Atkinson cycle engine using genetic algorithm," Applied Energy, Elsevier, vol. 105(C), pages 335-348.
    8. Liu, Qi & Guo, Tao & Fu, Jianqin & Dai, Hongliang & Liu, Jingping, 2022. "Experimental study on the effects of injection parameters and exhaust gas recirculation on combustion, emission and performance of Atkinson cycle gasoline direct-injection engine," Energy, Elsevier, vol. 238(PB).
    9. Zhang, Zhijin & Zhang, Haiyan & Wang, Tianyou & Jia, Ming, 2014. "Effects of tumble combined with EGR (exhaust gas recirculation) on the combustion and emissions in a spark ignition engine at part loads," Energy, Elsevier, vol. 65(C), pages 18-24.
    10. Wang, Shuofeng & Ji, Changwei & Zhang, Bo & Liu, Xiaolong, 2014. "Lean burn performance of a hydrogen-blended gasoline engine at the wide open throttle condition," Applied Energy, Elsevier, vol. 136(C), pages 43-50.
    11. Costa, M. & Di Blasio, G. & Prati, M.V. & Costagliola, M.A. & Cirillo, D. & La Villetta, M. & Caputo, C. & Martoriello, G., 2020. "Multi-objective optimization of a syngas powered reciprocating engine equipping a combined heat and power unit," Applied Energy, Elsevier, vol. 275(C).
    12. Rami Y. Dahham & Haiqiao Wei & Jiaying Pan, 2022. "Improving Thermal Efficiency of Internal Combustion Engines: Recent Progress and Remaining Challenges," Energies, MDPI, vol. 15(17), pages 1-60, August.
    13. Galloni, E. & Fontana, G. & Palmaccio, R., 2013. "Effects of exhaust gas recycle in a downsized gasoline engine," Applied Energy, Elsevier, vol. 105(C), pages 99-107.
    14. Yu, Xunzhao & Zhu, Ling & Wang, Yan & Filev, Dimitar & Yao, Xin, 2022. "Internal combustion engine calibration using optimization algorithms," Applied Energy, Elsevier, vol. 305(C).
    15. Tornatore, Cinzia & Bozza, Fabio & De Bellis, Vincenzo & Teodosio, Luigi & Valentino, Gerardo & Marchitto, Luca, 2019. "Experimental and numerical study on the influence of cooled EGR on knock tendency, performance and emissions of a downsized spark-ignition engine," Energy, Elsevier, vol. 172(C), pages 968-976.
    16. Xu, Zheng & Ji, Fenzhu & Ding, Shuiting & Zhao, Yunhai & Zhang, Xiangbo & Zhou, Yu & Zhang, Qi & Du, Farong, 2020. "High-altitude performance and improvement methods of poppet valves 2-stroke aircraft diesel engine," Applied Energy, Elsevier, vol. 276(C).
    17. José Rodríguez-Fernández & Ángel Ramos & Javier Barba & Dolores Cárdenas & Jesús Delgado, 2020. "Improving Fuel Economy and Engine Performance through Gasoline Fuel Octane Rating," Energies, MDPI, vol. 13(13), pages 1-14, July.
    18. Jung, Dongwon & Lee, Sejun, 2018. "An investigation on the potential of dedicated exhaust gas recirculation for improving thermal efficiency of stoichiometric and lean spark ignition engine operation," Applied Energy, Elsevier, vol. 228(C), pages 1754-1766.
    19. Khoa, Nguyen Xuan & Quach Nhu, Y. & Lim, Ocktaeck, 2020. "Estimation of parameters affected in internal exhaust residual gases recirculation and the influence of exhaust residual gas on performance and emission of a spark ignition engine," Applied Energy, Elsevier, vol. 278(C).
    20. Duro, João A. & Ozturk, Umud Esat & Oara, Daniel C. & Salomon, Shaul & Lygoe, Robert J. & Burke, Richard & Purshouse, Robin C., 2023. "Methods for constrained optimization of expensive mixed-integer multi-objective problems, with application to an internal combustion engine design problem," European Journal of Operational Research, Elsevier, vol. 307(1), pages 421-446.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:164:y:2016:i:c:p:162-174. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.