IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v293y2017icp461-479.html
   My bibliography  Save this article

On a one time-step Monte Carlo simulation approach of the SABR model: Application to European options

Author

Listed:
  • Leitao, Álvaro
  • Grzelak, Lech A.
  • Oosterlee, Cornelis W.

Abstract

In this work, we propose a one time-step Monte Carlo method for the SABR model. We base our approach on an accurate approximation of the cumulative distribution function of the time-integrated variance (conditional on the SABR volatility), using Fourier techniques and a copula. Resulting is a fast simulation algorithm which can be employed to price European options under the SABR dynamics. Our approach can thus be seen as an alternative to Hagan’s analytic formula for short maturities that may be employed for model calibration purposes.

Suggested Citation

  • Leitao, Álvaro & Grzelak, Lech A. & Oosterlee, Cornelis W., 2017. "On a one time-step Monte Carlo simulation approach of the SABR model: Application to European options," Applied Mathematics and Computation, Elsevier, vol. 293(C), pages 461-479.
  • Handle: RePEc:eee:apmaco:v:293:y:2017:i:c:p:461-479
    DOI: 10.1016/j.amc.2016.08.030
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300316305252
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2016.08.030?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Fang, Fang & Oosterlee, Kees, 2008. "A Novel Pricing Method For European Options Based On Fourier-Cosine Series Expansions," MPRA Paper 9319, University Library of Munich, Germany.
    2. Bin Chen & Cornelis W. Oosterlee & Hans Van Der Weide, 2012. "A Low-Bias Simulation Scheme For The Sabr Stochastic Volatility Model," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 15(02), pages 1-37.
    3. Umberto Cherubini & Elisa Luciano, 2001. "Value-at-risk Trade-off and Capital Allocation with Copulas," Economic Notes, Banca Monte dei Paschi di Siena SpA, vol. 30(2), pages 235-256, July.
    4. Daniel Berg, 2009. "Copula goodness-of-fit testing: an overview and power comparison," The European Journal of Finance, Taylor & Francis Journals, vol. 15(7-8), pages 675-701.
    5. Rosenberg, Joshua V. & Schuermann, Til, 2006. "A general approach to integrated risk management with skewed, fat-tailed risks," Journal of Financial Economics, Elsevier, vol. 79(3), pages 569-614, March.
    6. U. Cherubini & E. Luciano, 2002. "Bivariate option pricing with copulas," Applied Mathematical Finance, Taylor & Francis Journals, vol. 9(2), pages 69-85.
    7. Joshua V. Rosenberg, 2003. "Nonparametric pricing of multivariate contingent claims," Staff Reports 162, Federal Reserve Bank of New York.
    8. Barbe, Philippe & Genest, Christian & Ghoudi, Kilani & Rémillard, Bruno, 1996. "On Kendall's Process," Journal of Multivariate Analysis, Elsevier, vol. 58(2), pages 197-229, August.
    9. Schroder, Mark Douglas, 1989. " Computing the Constant Elasticity of Variance Option Pricing Formula," Journal of Finance, American Finance Association, vol. 44(1), pages 211-219, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kirkby, J. Lars & Nguyen, Dang H. & Nguyen, Duy, 2020. "A general continuous time Markov chain approximation for multi-asset option pricing with systems of correlated diffusions," Applied Mathematics and Computation, Elsevier, vol. 386(C).
    2. Julio Guerrero & Giuseppe Orlando, 2022. "Stochastic Local Volatility models and the Wei-Norman factorization method," Papers 2201.11241, arXiv.org.
    3. Leitao, Álvaro & Oosterlee, Cornelis W. & Ortiz-Gracia, Luis & Bohte, Sander M., 2018. "On the data-driven COS method," Applied Mathematics and Computation, Elsevier, vol. 317(C), pages 68-84.
    4. Shuaiqiang Liu & Lech A. Grzelak & Cornelis W. Oosterlee, 2022. "The Seven-League Scheme: Deep Learning for Large Time Step Monte Carlo Simulations of Stochastic Differential Equations," Risks, MDPI, vol. 10(3), pages 1-27, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Patton, Andrew, 2013. "Copula Methods for Forecasting Multivariate Time Series," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 899-960, Elsevier.
    2. Patton, Andrew J., 2012. "A review of copula models for economic time series," Journal of Multivariate Analysis, Elsevier, vol. 110(C), pages 4-18.
    3. Andrew J. Patton, 2006. "Estimation of multivariate models for time series of possibly different lengths," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 21(2), pages 147-173, March.
    4. Fantazzini, Dean, 2010. "Three-stage semi-parametric estimation of T-copulas: Asymptotics, finite-sample properties and computational aspects," Computational Statistics & Data Analysis, Elsevier, vol. 54(11), pages 2562-2579, November.
    5. Jean-David Fermanian, 2012. "An overview of the goodness-of-fit test problem for copulas," Papers 1211.4416, arXiv.org.
    6. Hussain, Saiful Izzuan & Li, Steven, 2018. "The dependence structure between Chinese and other major stock markets using extreme values and copulas," International Review of Economics & Finance, Elsevier, vol. 56(C), pages 421-437.
    7. Grundke, Peter & Polle, Simone, 2012. "Crisis and risk dependencies," European Journal of Operational Research, Elsevier, vol. 223(2), pages 518-528.
    8. Fernandez, Viviana, 2008. "Copula-based measures of dependence structure in assets returns," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(14), pages 3615-3628.
    9. Tavin, Bertrand, 2015. "Detection of arbitrage in a market with multi-asset derivatives and known risk-neutral marginals," Journal of Banking & Finance, Elsevier, vol. 53(C), pages 158-178.
    10. Álvaro Leitao & Lech A. Grzelak & Cornelis W. Oosterlee, 2017. "On an efficient multiple time step Monte Carlo simulation of the SABR model," Quantitative Finance, Taylor & Francis Journals, vol. 17(10), pages 1549-1565, October.
    11. Ning Cai & Yingda Song & Nan Chen, 2017. "Exact Simulation of the SABR Model," Operations Research, INFORMS, vol. 65(4), pages 931-951, August.
    12. Jaehyuk Choi & Chenru Liu & Byoung Ki Seo, 2019. "Hyperbolic normal stochastic volatility model," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 39(2), pages 186-204, February.
    13. Umberto Cherubini & Fabio Gobbi & Sabrina Mulinacci & Silvia Romagnoli, 2016. "Granger Independent Martingale Processes," Papers 1607.01519, arXiv.org.
    14. Choi, Jaehyuk & Wu, Lixin, 2021. "The equivalent constant-elasticity-of-variance (CEV) volatility of the stochastic-alpha-beta-rho (SABR) model," Journal of Economic Dynamics and Control, Elsevier, vol. 128(C).
    15. Pircalabu, A. & Hvolby, T. & Jung, J. & Høg, E., 2017. "Joint price and volumetric risk in wind power trading: A copula approach," Energy Economics, Elsevier, vol. 62(C), pages 139-154.
    16. Noureddine Benlagha, 2014. "Dependence structure between nominal and index-linked bond returns: a bivariate copula and DCC-GARCH approach," Applied Economics, Taylor & Francis Journals, vol. 46(31), pages 3849-3860, November.
    17. Bhatti, M. Ishaq & Nguyen, Cuong C., 2012. "Diversification evidence from international equity markets using extreme values and stochastic copulas," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 22(3), pages 622-646.
    18. Hulusi Inanoglu & Michael Jacobs, 2009. "Models for Risk Aggregation and Sensitivity Analysis: An Application to Bank Economic Capital," JRFM, MDPI, vol. 2(1), pages 1-72, December.
    19. Yanqin Fan & Xiaohong Chen & Andrew Patton, 2004. "(IAM Series No 003) Simple Tests for Models of Dependence Between Multiple Financial Time Series, with Applications to U.S. Equity Returns and Exchange Rates," FMG Discussion Papers dp483, Financial Markets Group.
    20. Desislava Chetalova & Marcel Wollschlager & Rudi Schafer, 2015. "Dependence structure of market states," Papers 1503.09004, arXiv.org, revised Jul 2015.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:293:y:2017:i:c:p:461-479. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.