IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v95y2008i5p598-606.html
   My bibliography  Save this article

The ionic composition of the streams of the mid-Murrumbidgee River: Implications for the management of downstream salinity

Author

Listed:
  • Conyers, M.K.
  • Hume, I.
  • Summerell, G.
  • Slinger, D.
  • Mitchell, M.
  • Cawley, R.

Abstract

The Murrumbidgee River catchment is a major region of both dryland and irrigated agricultural production in eastern Australia. The salinity of water in the lower reaches of the river is the subject of concern; changing land management upstream is one option to minimise accessions of salt to the river but this must be done in a way that provides an adequate quantity of water for downstream users and the environment. We examined 30 years of sporadic data on the ionic composition of water for 7 subcatchments contributing to the mid-Murrumbidgee River and for 2 gauging stations on the river itself. Despite the common local presumption that salinity, measured as electrical conductivity (EC), is primarily due to NaCl from cyclic marine salt, we found that NaCl was the dominant salt in only some streams. The presence of HCO3-'s of Ca2+ and Mg2+ in all streams, and their dominance in 2 streams, indicates that mineral weathering is also a major contributor to the salt load of water in the catchment. However, Ca2+ and Mg2+ bicarbonates have limited solubility and so their concentrations will not become a cause of osmotic stress when the water is used for drinking or irrigation. Therefore, in our efforts to prioritise lower order catchments of the Murrumbidgee River for changed land management, it will be necessary to examine the nature of the salts they discharge, not just EC. By distinguishing between Cl-/Na+ dominated streams and Ca2+, Mg2+/HCO3- dominated streams we can refine our search for sources of osmotic stress which might potentially worsen with time. This will enable us to target particular land management units so as to obtain the maximum reduction in downstream salinity with a minimal decrease in flow volume and minimal area of land undergoing changed landuse.

Suggested Citation

  • Conyers, M.K. & Hume, I. & Summerell, G. & Slinger, D. & Mitchell, M. & Cawley, R., 2008. "The ionic composition of the streams of the mid-Murrumbidgee River: Implications for the management of downstream salinity," Agricultural Water Management, Elsevier, vol. 95(5), pages 598-606, May.
  • Handle: RePEc:eee:agiwat:v:95:y:2008:i:5:p:598-606
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378-3774(08)00004-8
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Athukorala, Wasantha & Wilson, Clevo & Managi, Shunsuke, 2017. "Social welfare losses from groundwater over-extraction for small-scale agriculture in Sri Lanka: Environmental concern for land use," Journal of Forest Economics, Elsevier, vol. 29(PA), pages 47-55.
    2. Khan, Shahbaz & Rana, Tariq & Hanjra, Munir A. & Zirilli, John, 2009. "Water markets and soil salinity nexus: Can minimum irrigation intensities address the issue?," Agricultural Water Management, Elsevier, vol. 96(3), pages 493-503, March.
    3. Holland, Jonathan E. & Luck, Gary W. & Max Finlayson, C., 2015. "Threats to food production and water quality in the Murray–Darling Basin of Australia," Ecosystem Services, Elsevier, vol. 12(C), pages 55-70.
    4. Wasantha Athukorala & Clevo Wilson, 2012. "Groundwater overuse and farm-level technical inefficiency: evidence from Sri Lanka," School of Economics and Finance Discussion Papers and Working Papers Series 279, School of Economics and Finance, Queensland University of Technology.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:95:y:2008:i:5:p:598-606. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.