IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v45y2000i2p203-214.html
   My bibliography  Save this article

Estimation of crop water requirements in arid region using Penman-Monteith equation with derived crop coefficients: a case study on Acala cotton in Sudan Gezira irrigated scheme

Author

Listed:
  • Abdelhadi, A. W.
  • Hata, Takeshi
  • Tanakamaru, Haruya
  • Tada, Akio
  • Tariq, M. A.

Abstract

No abstract is available for this item.

Suggested Citation

  • Abdelhadi, A. W. & Hata, Takeshi & Tanakamaru, Haruya & Tada, Akio & Tariq, M. A., 2000. "Estimation of crop water requirements in arid region using Penman-Monteith equation with derived crop coefficients: a case study on Acala cotton in Sudan Gezira irrigated scheme," Agricultural Water Management, Elsevier, vol. 45(2), pages 203-214, July.
  • Handle: RePEc:eee:agiwat:v:45:y:2000:i:2:p:203-214
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378-3774(99)00077-3
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ibrahim, Ahmed A. & Stigter, C. J. & Adeeb, Ali M. & Adam, Hussein S. & Van Rheenen, W., 1999. "On-farm sampling density and correction requirements for soil moisture determination in irrigated heavy clay soils in the Gezira, central Sudan," Agricultural Water Management, Elsevier, vol. 41(2), pages 91-113, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Al Zayed, Islam Sabry & Elagib, Nadir Ahmed & Ribbe, Lars & Heinrich, Jürgen, 2016. "Satellite-based evapotranspiration over Gezira Irrigation Scheme, Sudan: A comparative study," Agricultural Water Management, Elsevier, vol. 177(C), pages 66-76.
    2. Yousaf, Wasif & Awan, Wakas Karim & Kamran, Muhammad & Ahmad, Sajid Rashid & Bodla, Habib Ullah & Riaz, Mohammad & Umar, Muhammad & Chohan, Khurram, 2021. "A paradigm of GIS and remote sensing for crop water deficit assessment in near real time to improve irrigation distribution plan," Agricultural Water Management, Elsevier, vol. 243(C).
    3. Zhao, Wenzhi & Liu, Bing & Zhang, Zhihui, 2010. "Water requirements of maize in the middle Heihe River basin, China," Agricultural Water Management, Elsevier, vol. 97(2), pages 215-223, February.
    4. Suleiman, Ayman A. & Tojo Soler, Cecilia M. & Hoogenboom, Gerrit, 2007. "Evaluation of FAO-56 crop coefficient procedures for deficit irrigation management of cotton in a humid climate," Agricultural Water Management, Elsevier, vol. 91(1-3), pages 33-42, July.
    5. Yang, Xiaolin & Gao, Wangsheng & Shi, Quanhong & Chen, Fu & Chu, Qingquan, 2013. "Impact of climate change on the water requirement of summer maize in the Huang-Huai-Hai farming region," Agricultural Water Management, Elsevier, vol. 124(C), pages 20-27.
    6. Al Zayed, Islam Sabry & Elagib, Nadir Ahmed & Ribbe, Lars & Heinrich, Jürgen, 2015. "Spatio-temporal performance of large-scale Gezira Irrigation Scheme, Sudan," Agricultural Systems, Elsevier, vol. 133(C), pages 131-142.
    7. Antonino, A.C.D. & Hammecker, C. & Montenegro, S.M.L.G. & Netto, A.M. & Angulo-Jaramillo, R. & Lira, C.A.B.O., 2005. "Subirrigation of land bordering small reservoirs in the semi-arid region in the Northeast of Brazil: monitoring and water balance," Agricultural Water Management, Elsevier, vol. 73(2), pages 131-147, May.
    8. Tang, Bo & Tong, Ling & Kang, Shaozhong & Zhang, Lu, 2011. "Impacts of climate variability on reference evapotranspiration over 58 years in the Haihe river basin of north China," Agricultural Water Management, Elsevier, vol. 98(10), pages 1660-1670, August.
    9. Bin Guo & Weihong Li & Jinyun Guo & Chuanfa Chen, 2015. "Risk Assessment of Regional Irrigation Water Demand and Supply in an Arid Inland River Basin of Northwestern China," Sustainability, MDPI, vol. 7(9), pages 1-16, September.
    10. Barco, A. & Maucieri, C. & Borin, M., 2018. "Root system characterization and water requirements of ten perennial herbaceous species for biomass production managed with high nitrogen and water inputs," Agricultural Water Management, Elsevier, vol. 196(C), pages 37-47.
    11. Tong, Ling & Kang, Shaozhong & Zhang, Lu, 2007. "Temporal and spatial variations of evapotranspiration for spring wheat in the Shiyang river basin in northwest China," Agricultural Water Management, Elsevier, vol. 87(3), pages 241-250, February.
    12. Singh Rawat, Kishan & Kumar Singh, Sudhir & Bala, Anju & Szabó, Szilárd, 2019. "Estimation of crop evapotranspiration through spatial distributed crop coefficient in a semi-arid environment," Agricultural Water Management, Elsevier, vol. 213(C), pages 922-933.
    13. Zhao, Wenzhi & Chang, Xuexiang & Chang, Xueli & Zhang, Dengrong & Liu, Bing & Du, Jun & Lin, Pengfei, 2018. "Estimating water consumption based on meta-analysis and MODIS data for an oasis region in northwestern China," Agricultural Water Management, Elsevier, vol. 208(C), pages 478-489.
    14. Helman, David & Bonfil, David J. & Lensky, Itamar M., 2019. "Crop RS-Met: A biophysical evapotranspiration and root-zone soil water content model for crops based on proximal sensing and meteorological data," Agricultural Water Management, Elsevier, vol. 211(C), pages 210-219.
    15. Rawat, Kishan Singh & Bala, Anju & Singh, Sudhir Kumar & Pal, Raj Kumar, 2017. "Quantification of wheat crop evapotranspiration and mapping: A case study from Bhiwani District of Haryana, India," Agricultural Water Management, Elsevier, vol. 187(C), pages 200-209.
    16. Yoo, Seung-Hwan & Choi, Jin-Yong & Jang, Min-Won, 2008. "Estimation of design water requirement using FAO Penman-Monteith and optimal probability distribution function in South Korea," Agricultural Water Management, Elsevier, vol. 95(7), pages 845-853, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Oluwasemire, K. O. & Stigter, C. J. & Owonubi, J. J. & Jagtap, S. S., 2002. "Seasonal water use and water productivity of millet-based cropping systems in the Nigerian Sudan savanna near Kano," Agricultural Water Management, Elsevier, vol. 56(3), pages 207-227, August.
    2. Raddad, E.Y. & Luukkanen, O., 2007. "The influence of different Acacia senegal agroforestry systems on soil water and crop yields in clay soils of the Blue Nile region, Sudan," Agricultural Water Management, Elsevier, vol. 87(1), pages 61-72, January.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:45:y:2000:i:2:p:203-214. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.