IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v289y2023ics0378377423003682.html
   My bibliography  Save this article

Combined tillage: A management strategy to improve rainfed maize tolerance to extreme events in northwestern China

Author

Listed:
  • Sun, Jun
  • Niu, Wenquan
  • Du, Yadan
  • Zhang, Qian
  • Li, Guochun
  • Ma, Li
  • Zhu, Jinjin
  • Mu, Fei
  • Sun, Dan
  • Gan, Haicheng
  • Siddique, Kadambot H.M.
  • Ali, Sajjad

Abstract

Climate warming has increased the frequency of droughts and excessive precipitation, adversely affecting crop growth, particularly under traditional intensive tillage. No-till improves crop tolerance to extreme events by reducing soil evaporation and improving soil structural stability to enhance soil water storage capacity and crop resistance, but long-term mono-no-till cakes the soil, reducing crop yield. Combining intensive tillage with no-till can compensate for some deficiencies arising from conventional tillage or single no-till. A three-year field experiment was conducted in wet (2020) and normal (2019 and 2021, where a drought event occurred in 2021) years to study the effect of tillage practices on summer maize productivity under different precipitation types. Treatments included conventional tillage (CT), no-tillage (NT), ridge cultivation with no-tillage (RNT), and conventional tillage of winter wheat combined with no-tillage of summer maize (NC). Compared with NT, NC and RNT significantly reduced soil bulk density and increased soil porosity in the 0–20 cm soil layer. Compared with CT, NC and RNT significantly improved aggregate stability, NC increased available soil water storage by 19.7% in the dry season (P < 0.05), and NC and RNT significantly reduced lodging rate in the rainy season. Over the three years, NC and RNT maintained higher maize yields (NC: 10.3 t ha–1 and RNT: 10.0 t ha–1) than CT (9.2 t ha–1), and NC had significantly higher yield stability than CT. Meanwhile, NC and RNT had higher precipitation use efficiency (PUE; NC: 21.2 kg ha–1 mm–1, RNT: 20.7 kg ha–1 mm–1) than NT (20.1 kg ha–1 mm–1) or CT (19.1 kg ha–1 mm–1). In terms of combined productivity, NC and RNT provide a more suitable soil environment for crop growth and maintain higher yield than NT and CT. NC rotation is recommended as the optimal tillage system for sustainable crop production under semi - arid agricultural conditions. RNT can be extended to areas prone to flooding with abundant rainfall. These results offer a benchmark for future studies on regional maize production under climate change.

Suggested Citation

  • Sun, Jun & Niu, Wenquan & Du, Yadan & Zhang, Qian & Li, Guochun & Ma, Li & Zhu, Jinjin & Mu, Fei & Sun, Dan & Gan, Haicheng & Siddique, Kadambot H.M. & Ali, Sajjad, 2023. "Combined tillage: A management strategy to improve rainfed maize tolerance to extreme events in northwestern China," Agricultural Water Management, Elsevier, vol. 289(C).
  • Handle: RePEc:eee:agiwat:v:289:y:2023:i:c:s0378377423003682
    DOI: 10.1016/j.agwat.2023.108503
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377423003682
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2023.108503?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Qi, Dongliang & Hu, Tiantian & Liu, Tingting, 2020. "Biomass accumulation and distribution, yield formation and water use efficiency responses of maize (Zea mays L.) to nitrogen supply methods under partial root-zone irrigation," Agricultural Water Management, Elsevier, vol. 230(C).
    2. Fang, Heng & Li, Yuannong & Gu, Xiaobo & Chen, Pengpeng & Li, Yupeng, 2022. "Root characteristics, utilization of water and nitrogen, and yield of maize under biodegradable film mulching and nitrogen application," Agricultural Water Management, Elsevier, vol. 262(C).
    3. Fang, Heng & Li, Yuannong & Gu, Xiaobo & Li, Yupeng & Chen, Pengpeng, 2021. "Can ridge-furrow with film and straw mulching improve wheat-maize system productivity and maintain soil fertility on the Loess Plateau of China?," Agricultural Water Management, Elsevier, vol. 246(C).
    4. Wang, Hao & Xu, Ranran & Li, Yang & Yang, Liye & Shi, Wei & Liu, Yongjie & Chang, Shenghua & Hou, Fujiang & Jia, Qianmin, 2019. "Enhance root-bleeding sap flow and root lodging resistance of maize under a combination of nitrogen strategies and farming practices," Agricultural Water Management, Elsevier, vol. 224(C), pages 1-1.
    5. Shaaban, Ahmad Shams Aldien & Wahbi, Ammar & Sinclair, Thomas R., 2018. "Sowing date and mulch to improve water use and yield of wheat and barley in the Middle East environment," Agricultural Systems, Elsevier, vol. 165(C), pages 26-32.
    6. Gu, Xiaobo & Cai, Huanjie & Fang, Heng & Chen, Pengpeng & Li, Yupeng & Li, Yuannong, 2021. "Soil hydro-thermal characteristics, maize yield and water use efficiency as affected by different biodegradable film mulching patterns in a rain-fed semi-arid area of China," Agricultural Water Management, Elsevier, vol. 245(C).
    7. Lu, Hai-dong & Xue, Ji-quan & Guo, Dong-wei, 2017. "Efficacy of planting date adjustment as a cultivation strategy to cope with drought stress and increase rainfed maize yield and water-use efficiency," Agricultural Water Management, Elsevier, vol. 179(C), pages 227-235.
    8. Zhai, Lichao & Wang, Zhanbiao & Song, Shijia & Zhang, Lihua & Zhang, Zhengbin & Jia, Xiuling, 2021. "Tillage practices affects the grain filling of inferior kernel of summer maize by regulating soil water content and photosynthetic capacity," Agricultural Water Management, Elsevier, vol. 245(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fang, Heng & Li, Yuannong & Gu, Xiaobo & Chen, Pengpeng & Li, Yupeng, 2022. "Root characteristics, utilization of water and nitrogen, and yield of maize under biodegradable film mulching and nitrogen application," Agricultural Water Management, Elsevier, vol. 262(C).
    2. Zheng, Jing & Fan, Junliang & Zhou, Minghua & Zhang, Fucang & Liao, Zhenqi & Lai, Zhenlin & Yan, Shicheng & Guo, Jinjin & Li, Zhijun & Xiang, Youzhen, 2022. "Ridge-furrow plastic film mulching enhances grain yield and yield stability of rainfed maize by improving resources capture and use efficiency in a semi-humid drought-prone region," Agricultural Water Management, Elsevier, vol. 269(C).
    3. Yongwei Liu & Zhenzhen Yang & Changxiong Zhu & Baogang Zhang & Hongna Li, 2023. "The Eco-Agricultural Industrial Chain: The Meaning, Content and Practices," IJERPH, MDPI, vol. 20(4), pages 1-12, February.
    4. Wang, Wei & Wang, Bao-Zhong & Zhou, Rui & Ullah, Abid & Zhao, Ze-Ying & Wang, Peng-Yang & Su, Yong-Zhong & Xiong, You-Cai, 2022. "Biocrusts as a nature-based strategy (NbS) improve soil carbon and nitrogen stocks and maize productivity in semiarid environment," Agricultural Water Management, Elsevier, vol. 270(C).
    5. Liao, Zhenqi & Zeng, Hualiang & Fan, Junliang & Lai, Zhenlin & Zhang, Chen & Zhang, Fucang & Wang, Haidong & Cheng, Minghui & Guo, Jinjin & Li, Zhijun & Wu, Peng, 2022. "Effects of plant density, nitrogen rate and supplemental irrigation on photosynthesis, root growth, seed yield and water-nitrogen use efficiency of soybean under ridge-furrow plastic mulching," Agricultural Water Management, Elsevier, vol. 268(C).
    6. Espoir Mukengere Bagula & Jackson-Gilbert Mwanjalolo Majaliwa & Twaha Ali Basamba & Jean-Gomez Mubalama Mondo & Bernard Vanlauwe & Geofrey Gabiri & John-Baptist Tumuhairwe & Gustave Nachigera Mushagal, 2022. "Water Use Efficiency of Maize ( Zea mays L.) Crop under Selected Soil and Water Conservation Practices along the Slope Gradient in Ruzizi Watershed, Eastern D.R. Congo," Land, MDPI, vol. 11(10), pages 1-20, October.
    7. Alexander Esaulko & Vladimir Sitnikov & Elena Pismennaya & Olga Vlasova & Evgeniy Golosnoi & Alena Ozheredova & Anna Ivolga & Vasilii Erokhin, 2022. "Productivity of Winter Wheat Cultivated by Direct Seeding: Measuring the Effect of Hydrothermal Coefficient in the Arid Zone of Central Fore-Caucasus," Agriculture, MDPI, vol. 13(1), pages 1-17, December.
    8. Zhang, Guangxin & Meng, Wenhui & Pan, Wenhui & Han, Juan & Liao, Yuncheng, 2022. "Effect of soil water content changes caused by ridge-furrow plastic film mulching on the root distribution and water use pattern of spring maize in the Loess Plateau," Agricultural Water Management, Elsevier, vol. 261(C).
    9. Zhang, Binbin & Su, Shunshun & Duan, Chenxiao & Feng, Hao & Chau, Henry Wai & He, Jianqiang & Li, Yi & Hill, Robert Lee & Wu, Shufang & Zou, Yufeng, 2022. "Effects of partial organic fertilizer replacement combined with rainwater collection system on soil water, nitrate-nitrogen and apple yield of rainfed apple orchard in the Loess Plateau of China: A 3-," Agricultural Water Management, Elsevier, vol. 260(C).
    10. Hu, Yajin & Ma, Penghui & Duan, Chenxiao & Wu, Shufang & Feng, Hao & Zou, Yufeng, 2020. "Black plastic film combined with straw mulching delays senescence and increases summer maize yield in northwest China," Agricultural Water Management, Elsevier, vol. 231(C).
    11. Gao, Yukun & Zhao, Hongfang & Zhao, Chuang & Hu, Guohua & Zhang, Han & Liu, Xue & Li, Nan & Hou, Haiyan & Li, Xia, 2022. "Spatial and temporal variations of maize and wheat yield gaps and their relationships with climate in China," Agricultural Water Management, Elsevier, vol. 270(C).
    12. Xing Wang & Hailong Sun & Changming Tan & Xiaowen Wang & Min Xia, 2021. "Effects of Film Mulching on Plant Growth and Nutrients in Artificial Soil: A Case Study on High Altitude Slopes," Sustainability, MDPI, vol. 13(19), pages 1-15, October.
    13. Qiang, Shengcai & Zhang, Yan & Fan, Junliang & Zhang, Fucang & Sun, Min & Gao, Zhiqiang, 2022. "Combined effects of ridge–furrow ratio and urea type on grain yield and water productivity of rainfed winter wheat on the Loess Plateau of China," Agricultural Water Management, Elsevier, vol. 261(C).
    14. Qi, Dongliang & Pan, Chen, 2022. "Responses of shoot biomass accumulation, distribution, and nitrogen use efficiency of maize to nitrogen application rates under waterlogging," Agricultural Water Management, Elsevier, vol. 261(C).
    15. Yin, Jia De & Zhang, Xu Cheng & Ma, Yi Fan & Yu, Xian Feng & Hou, Hui Zhi & Wang, Hong Li & Fang, Yan Jie, 2022. "Vertical rotary sub-soiling under ridge–furrow with plastic mulching system increased crops yield by efficient use of deep soil moisture and rainfall," Agricultural Water Management, Elsevier, vol. 271(C).
    16. Zijun Zhao & Wenqing He & Guangfeng Chen & Changrong Yan & Haihe Gao & Qin Liu, 2024. "Dry Direct-Seeded Rice Yield and Water Use Efficiency as Affected by Biodegradable Film Mulching in the Northeastern Region of China," Agriculture, MDPI, vol. 14(2), pages 1-19, January.
    17. Cai, Wenjing & Gu, Xiaobo & Du, Yadan & Chang, Tian & Lu, Shiyu & Zheng, Xiaobo & Bai, Dongping & Song, Hui & Sun, Shikun & Cai, Huanjie, 2022. "Effects of mulching on water saving, yield increase and emission reduction for maize in China," Agricultural Water Management, Elsevier, vol. 274(C).
    18. Zhang, Yuanhong & Li, Haoyu & Sun, Yuanguang & Zhang, Qi & Liu, Pengzhao & Wang, Rui & Li, Jun, 2022. "Temporal stability analysis evaluates soil water sustainability of different cropping systems in a dryland agricultural ecosystem," Agricultural Water Management, Elsevier, vol. 272(C).
    19. Zhai, Lichao & Wang, Zhanbiao & Song, Shijia & Zhang, Lihua & Zhang, Zhengbin & Jia, Xiuling, 2021. "Tillage practices affects the grain filling of inferior kernel of summer maize by regulating soil water content and photosynthetic capacity," Agricultural Water Management, Elsevier, vol. 245(C).
    20. Mo, Yan & Li, Guangyong & Wang, Dan & Lamm, Freddie R. & Wang, Jiandong & Zhang, Yanqun & Cai, Mingkun & Gong, Shihong, 2020. "Planting and preemergence irrigation procedures to enhance germination of subsurface drip irrigated corn," Agricultural Water Management, Elsevier, vol. 242(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:289:y:2023:i:c:s0378377423003682. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.