IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v255y2021ics0378377421003012.html
   My bibliography  Save this article

Land gradient and configuration effects on yield, irrigation amount and irrigation water productivity in rice-wheat and maize-wheat cropping systems in Eastern India

Author

Listed:
  • Devkota, Krishna Prasad
  • Yadav, Sudhir
  • Humphreys, E.
  • Kumar, Akhilesh
  • Kumar, Pankaj
  • Kumar, Virender
  • Malik, R.K.
  • Srivastava, Amit K.

Abstract

Laser land levelling is expanding rapidly in the rice-wheat (RW) and maize-wheat (MW) systems of the Indo-Gangetic Plains of India and Pakistan. Current practice is to level to zero (0%) gradient, whereas a small gradient (e.g. 0.1%) is typically used in developed countries. Therefore, experiments were conducted in farmers’ plots (~15 m x 40 m) in the Eastern Gangetic Plains to evaluate laser levelling with a 0.1% gradient in comparison with 0% and farmer levelling practice (FL). The study was conducted over two years in RW and MW systems. In the MW system, raised beds in plots lasered with 0% and 0.1% gradients were also evaluated. Laser levelling with 0% gradient significantly reduced irrigation amount and/or increased irrigation water productivity (WPi) in all crops/systems grown on the flat compared to FL except for wheat in the MW system. While there was a consistent trend for higher yield with a 0% gradient compared with FL, the differences were not significant in any crop/system. For the RW system, the results suggest no to marginal benefits in irrigation amount and WPi from levelling with a 0.1% gradient in comparison with 0% gradient. In that system, by far the bigger gains were from changing from FL to laser levelling with 0% gradient. This resulted in substantial reductions in irrigation amount, which greatly increased WPi in both crops (by ~40%), while yield was not affected. Rice grown with FL was not profitable, but lasering with 0% gradient significantly increased gross margin for rice, wheat and the total RW system. As for the RW system, levelling to 0% with a flat configuration significantly increased WPi of both crops in the MW system compared to FL, but by a lesser proportion. Raised beds significantly increased yield of maize by 8% (0.5 t ha−1), reduced irrigation amount by 20% (40 mm) and increased WPi by 34% (1.0 kg m−3) in comparison with the laser levelled flat plots. Gross margin of the MW system on beds was 17–20% higher than FL, and gross margin with beds on a 0.1% gradient was significantly higher than either gradient on the flat. The results suggest that the gains from levelling with a 0.1% gradient compared to 0% are marginal; however, this may change if the goal of consolidation of small farmer plots into larger fields becomes a reality provided there is a proportionate increase in irrigation flow rates, and ability to drain.

Suggested Citation

  • Devkota, Krishna Prasad & Yadav, Sudhir & Humphreys, E. & Kumar, Akhilesh & Kumar, Pankaj & Kumar, Virender & Malik, R.K. & Srivastava, Amit K., 2021. "Land gradient and configuration effects on yield, irrigation amount and irrigation water productivity in rice-wheat and maize-wheat cropping systems in Eastern India," Agricultural Water Management, Elsevier, vol. 255(C).
  • Handle: RePEc:eee:agiwat:v:255:y:2021:i:c:s0378377421003012
    DOI: 10.1016/j.agwat.2021.107036
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377421003012
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2021.107036?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Smith, RJ & Uddin, MJ, 2020. "Selection of flow rate and irrigation duration for high performance bay irrigation," Agricultural Water Management, Elsevier, vol. 228(C).
    2. Bautista, E. & Clemmens, A.J. & Strelkoff, T.S. & Schlegel, J., 2009. "Modern analysis of surface irrigation systems with WinSRFR," Agricultural Water Management, Elsevier, vol. 96(7), pages 1146-1154, July.
    3. Playan, Enrique & Mateos, Luciano, 2006. "Modernization and optimization of irrigation systems to increase water productivity," Agricultural Water Management, Elsevier, vol. 80(1-3), pages 100-116, February.
    4. Ali, Akhter & Hussain, Imtiaz & Rahut, Dil Bahadur & Erenstein, Olaf, 2018. "Laser-land leveling adoption and its impact on water use, crop yields and household income: Empirical evidence from the rice-wheat system of Pakistan Punjab," Food Policy, Elsevier, vol. 77(C), pages 19-32.
    5. Smith, R.J. & Raine, S.R. & Minkevich, J., 2005. "Irrigation application efficiency and deep drainage potential under surface irrigated cotton," Agricultural Water Management, Elsevier, vol. 71(2), pages 117-130, February.
    6. González, César & Cervera, Luis & Moret-Fernández, David, 2011. "Basin irrigation design with longitudinal slope," Agricultural Water Management, Elsevier, vol. 98(10), pages 1516-1522, August.
    7. Ba, Hélène A. & de Mey, Yann & Thoron, Sylvie & Demont, Matty, 2019. "Inclusiveness of contract farming along the vertical coordination continuum: Evidence from the Vietnamese rice sector," Land Use Policy, Elsevier, vol. 87(C).
    8. Playan, E. & Faci, J. M. & Serreta, A., 1996. "Characterizing microtopographical effects on level-basin irrigation performance," Agricultural Water Management, Elsevier, vol. 29(2), pages 129-145, January.
    9. Khanna, Manoj & Malano, Hector M. & Fenton, John D. & Turral, Hugh, 2003. "Design and management guidelines for contour basin irrigation layouts in southeast Australia," Agricultural Water Management, Elsevier, vol. 62(1), pages 19-35, August.
    10. Subash, N. & Singh, S.S. & Priya, Neha, 2011. "Extreme rainfall indices and its impact on rice productivity--A case study over sub-humid climatic environment," Agricultural Water Management, Elsevier, vol. 98(9), pages 1373-1387, July.
    11. Travis J. Lybbert & Nicholas Magnan & Anil K. Bhargava & Kajal Gulati & David J. Spielman, 2013. "Farmers' Heterogeneous Valuation of Laser Land Leveling in Eastern Uttar Pradesh: An Experimental Auction to Inform Segmentation and Subsidy Strategies," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 95(2), pages 339-345.
    12. Rejesus, Roderick M. & Palis, Florencia G. & Rodriguez, Divina Gracia P. & Lampayan, Ruben M. & Bouman, Bas A.M., 2011. "Impact of the alternate wetting and drying (AWD) water-saving irrigation technique: Evidence from rice producers in the Philippines," Food Policy, Elsevier, vol. 36(2), pages 280-288, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yifu Zhang & Jian Liu & Wei Yuan & Ruihong Zhang & Xiaobo Xi, 2021. "Multiple Leveling for Paddy Field Preparation with Double Axis Rotary Tillage Accelerates Rice Growth and Economic Benefits," Agriculture, MDPI, vol. 11(12), pages 1-12, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mazarei, Reza & Soltani Mohammadi, Amir & Ebrahimian, Hamed & Naseri, Abd Ali, 2021. "Temporal variability of infiltration and roughness coefficients and furrow irrigation performance under different inflow rates," Agricultural Water Management, Elsevier, vol. 245(C).
    2. Mazarei, Reza & Mohammadi, Amir Soltani & Naseri, Abd Ali & Ebrahimian, Hamed & Izadpanah, Zahra, 2020. "Optimization of furrow irrigation performance of sugarcane fields based on inflow and geometric parameters using WinSRFR in Southwest of Iran," Agricultural Water Management, Elsevier, vol. 228(C).
    3. Costabile, Pierfranco & Costanzo, Carmelina & Gangi, Fabiola & De Gaetani, Carlo Iapige & Rossi, Lorenzo & Gandolfi, Claudio & Masseroni, Daniele, 2023. "High-resolution 2D modelling for simulating and improving the management of border irrigation," Agricultural Water Management, Elsevier, vol. 275(C).
    4. Nie, Wei-Bo & Dong, Shu-Xin & Li, Yi-Bo & Ma, Xiao-Yi, 2021. "Optimization of the border size on the irrigation district scale – Example of the Hetao irrigation district," Agricultural Water Management, Elsevier, vol. 248(C).
    5. Mehri, Akbar & Mohammadi, Amir Soltani & Ebrahimian, Hamed & Boroomandnasab, Saeid, 2023. "Evaluation and optimization of surge and alternate furrow irrigation performance in maize fields using the WinSRFR software," Agricultural Water Management, Elsevier, vol. 276(C).
    6. Salahou, Mohamed Khaled & Jiao, Xiyun & Lü, Haishen, 2018. "Border irrigation performance with distance-based cut-off," Agricultural Water Management, Elsevier, vol. 201(C), pages 27-37.
    7. Khanna, Manoj & Malano, Hector M., 2006. "Modelling of basin irrigation systems: A review," Agricultural Water Management, Elsevier, vol. 83(1-2), pages 87-99, May.
    8. González, César & Cervera, Luis & Moret-Fernández, David, 2011. "Basin irrigation design with longitudinal slope," Agricultural Water Management, Elsevier, vol. 98(10), pages 1516-1522, August.
    9. Smith, R.J. & Uddin, M.J. & Gillies, M.H., 2018. "Estimating irrigation duration for high performance furrow irrigation on cracking clay soils," Agricultural Water Management, Elsevier, vol. 206(C), pages 78-85.
    10. Xu, Jiatun & Cai, Huanjie & Saddique, Qaisar & Wang, Xiaoyun & Li, Liang & Ma, Chenguang & Lu, Yajun, 2019. "Evaluation and optimization of border irrigation in different irrigation seasons based on temporal variation of infiltration and roughness," Agricultural Water Management, Elsevier, vol. 214(C), pages 64-77.
    11. Akbari, Mahmood & Gheysari, Mahdi & Mostafazadeh-Fard, Behrouz & Shayannejad, Mohammad, 2018. "Surface irrigation simulation-optimization model based on meta-heuristic algorithms," Agricultural Water Management, Elsevier, vol. 201(C), pages 46-57.
    12. Ren, Dongyang & Xu, Xu & Engel, Bernard & Huang, Quanzhong & Xiong, Yunwu & Huo, Zailin & Huang, Guanhua, 2021. "A comprehensive analysis of water productivity in natural vegetation and various crops coexistent agro-ecosystems," Agricultural Water Management, Elsevier, vol. 243(C).
    13. Tapsuwan, Sorada & Peña-Arancibia, Jorge L. & Lazarow, Neil & Albisetti, Melisa & Zheng, Hongxing & Rojas, Rodrigo & Torres-Alferez, Vianney & Chiew, Francis H.S. & Hopkins, Richard & Penton, David J., 2022. "A benefit cost analysis of strategic and operational management options for water management in hyper-arid southern Peru," Agricultural Water Management, Elsevier, vol. 265(C).
    14. Ehsan Qasemipour & Ali Abbasi & Farhad Tarahomi, 2020. "Water-Saving Scenarios Based on Input–Output Analysis and Virtual Water Concept: A Case in Iran," Sustainability, MDPI, vol. 12(3), pages 1-16, January.
    15. Yehia Zahran & Hazem S. Kassem & Shimaa M. Naba & Bader Alhafi Alotaibi, 2020. "Shifting from Fragmentation to Integration: A Proposed Framework for Strengthening Agricultural Knowledge and Innovation System in Egypt," Sustainability, MDPI, vol. 12(12), pages 1-25, June.
    16. T. Fowe & I. Nouiri & B. Ibrahim & H. Karambiri & J. Paturel, 2015. "OPTIWAM: An Intelligent Tool for Optimizing Irrigation Water Management in Coupled Reservoir–Groundwater Systems," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(10), pages 3841-3861, August.
    17. Kumse, Kaittisak & Suzuki, Nobuhiro & Sato, Takeshi & Demont, Matty, 2021. "The spillover effect of direct competition between marketing cooperatives and private intermediaries: Evidence from the Thai rice value chain," Food Policy, Elsevier, vol. 101(C).
    18. Lankford, B. & Makin, Ian & Matthews, N. & McCornick, Peter G. & Noble, A. & Shah, Tushaar, "undated". "A compact to revitalise large-scale irrigation systems using a leadership-partnership-ownership 'Theory of Change'," Papers published in Journals (Open Access) H047459, International Water Management Institute.
    19. Jovanovic, N. & Pereira, L.S. & Paredes, P. & Pôças, I. & Cantore, V. & Todorovic, M., 2020. "A review of strategies, methods and technologies to reduce non-beneficial consumptive water use on farms considering the FAO56 methods," Agricultural Water Management, Elsevier, vol. 239(C).
    20. Wen Li & Chenying Liu & Qizhi Yang & Yulan You & Zhihang Zhuo & Xiaolin Zuo, 2023. "Factors Influencing Farmers’ Vertical Collaboration in the Agri-Chain Guided by Leading Enterprises: A Study of the Table Grape Industry in China," Agriculture, MDPI, vol. 13(10), pages 1-14, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:255:y:2021:i:c:s0378377421003012. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.