IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v252y2021ics037837742100192x.html
   My bibliography  Save this article

Consumption of precipitation by evapotranspiration indicates potential drought for broadleaved and coniferous plantations in hilly lands of South China

Author

Listed:
  • Ouyang, Lei
  • Wu, Jin
  • Zhao, Ping
  • Li, Yanqiong
  • Zhu, Liwei
  • Ni, Guangyan
  • Rao, Xingquan

Abstract

Quantifying the water use effects of tree plantations on regional hydrological processes is vitally important for evaluating the reforestation strategies related to a sustainable use of water resources. We conducted a comprehensive study to investigate the precipitation partitioning and hydrological effect of three different plantations (Schima wallichii, Acacia mangium, and Cunninghamia lanceolata) by monitoring sap flow and using a water balance equation during a two-year period (from January 2017 to December 2018) in hilly lands of South China. Owing to the abundant precipitation and radiation, both monthly stand-scale transpiration and evapotranspiration of the tree plantations were higher in the wet season than in the dry season. Strong stand-scale transpiration (Tstand) and evapotranspiration (ET) were observed in the broadleaved S. wallichii and A. mangium with a large proportion (more than 90%) of ET in precipitation (P). Whereas the coniferous C. lanceolata plantation possessed lower Tstand and ET but higher surface runoff, indicating a water surplus for the water yield. Following the uneven distribution pattern of precipitation, clear seasonal variation was observed for the ratio of ET/P that exceeded 1 during majority of the dry season. The observed vigorous transpiration and the higher ET/P values of the broadleaved S. wallichii and A. mangium plantations than those of the coniferous C. lanceolata suggests that broadleaved plantations are more likely to pose a potential threat to the catchment water yield and water balance in this region. However, the C. lanceolata, which limited the water exchange between the atmosphere and plants, is also considered to prevent its growth. Our findings quantified the hydrological effects of different plantations and will help to address the increasing water resource concerns related to the rapid expansion of plantations in hilly lands of South China.

Suggested Citation

  • Ouyang, Lei & Wu, Jin & Zhao, Ping & Li, Yanqiong & Zhu, Liwei & Ni, Guangyan & Rao, Xingquan, 2021. "Consumption of precipitation by evapotranspiration indicates potential drought for broadleaved and coniferous plantations in hilly lands of South China," Agricultural Water Management, Elsevier, vol. 252(C).
  • Handle: RePEc:eee:agiwat:v:252:y:2021:i:c:s037837742100192x
    DOI: 10.1016/j.agwat.2021.106927
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S037837742100192X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2021.106927?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chen, Dianyu & Wang, Youke & Liu, Shouyang & Wei, Xinguang & Wang, Xing, 2014. "Response of relative sap flow to meteorological factors under different soil moisture conditions in rainfed jujube (Ziziphus jujuba Mill.) plantations in semiarid Northwest China," Agricultural Water Management, Elsevier, vol. 136(C), pages 23-33.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Deyvis Cano & Carlos Cacciuttolo & Maria Custodio & Marcelo Nosetto, 2023. "Effects of Grassland Afforestation on Water Yield in Basins of Uruguay: A Spatio-Temporal Analysis of Historical Trends Using Remote Sensing and Field Measurements," Land, MDPI, vol. 12(1), pages 1-21, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Min Tang & Hongchen Li & Chao Zhang & Xining Zhao & Xiaodong Gao & Pute Wu, 2021. "Mulching Measures Improve Soil Moisture in Rain-Fed Jujube ( Ziziphus jujuba Mill.) Orchards in the Loess Hilly Region of China," Sustainability, MDPI, vol. 13(2), pages 1-13, January.
    2. Wang, Di & Wang, Li, 2017. "Dynamics of evapotranspiration partitioning for apple trees of different ages in a semiarid region of northwest China," Agricultural Water Management, Elsevier, vol. 191(C), pages 1-15.
    3. Pan, Daili & Song, Yaqian & Dyck, Miles & Gao, Xiaodong & Wu, Pute & Zhao, Xining, 2017. "Effect of plant cover type on soil water budget and tree photosynthesis in jujube orchards," Agricultural Water Management, Elsevier, vol. 184(C), pages 135-144.
    4. Jiang, Xuelian & Kang, Shaozhong & Li, Fusheng & Du, Taisheng & Tong, Ling & Comas, Louise, 2016. "Evapotranspiration partitioning and variation of sap flow in female and male parents of maize for hybrid seed production in arid region," Agricultural Water Management, Elsevier, vol. 176(C), pages 132-141.
    5. Chen, Dianyu & Wang, Xing & Liu, Shouyang & Wang, Youke & Gao, Zhiyong & Zhang, Linlin & Wei, Xinguang & Wei, Xindong, 2015. "Using Bayesian analysis to compare the performance of three evapotranspiration models for rainfed jujube (Ziziphus jujuba Mill.) plantations in the Loess Plateau," Agricultural Water Management, Elsevier, vol. 159(C), pages 341-357.
    6. Minxia Zhang & Shulin Chen & Hong Jiang & Yong Lin & Jinmeng Zhang & Xinzhang Song & Guomo Zhou, 2019. "Water-Use Characteristics and Physiological Response of Moso Bamboo to Flash Droughts," IJERPH, MDPI, vol. 16(12), pages 1-18, June.
    7. Zheng, Jing & Fan, Junliang & Zhang, Fucang & Wu, Lifeng & Zou, Yufeng & Zhuang, Qianlai, 2021. "Estimation of rainfed maize transpiration under various mulching methods using modified Jarvis-Stewart model and hybrid support vector machine model with whale optimization algorithm," Agricultural Water Management, Elsevier, vol. 249(C).
    8. Li Yang & Haijun Liu & Shabtai Cohen & Zhuangzhuang Gao, 2022. "Microclimate and Plant Transpiration of Tomato ( Solanum lycopersicum L.) in a Sunken Solar Greenhouse in North China," Agriculture, MDPI, vol. 12(2), pages 1-21, February.
    9. Gao, Zhiyong & Shi, Wenjuan & Wang, Xing & Wang, Youke & Yang, Yi & Zhang, Linlin & Chen, Dianyu, 2022. "Response of dew and hydraulic redistribution to soil water in a rainfed dryland jujube plantation in China’s Hilly Loess Region," Agricultural Water Management, Elsevier, vol. 271(C).
    10. Kukal, Meetpal S. & Irmak, Suat, 2022. "Nocturnal transpiration in field crops: Implications for temporal aggregation and diurnal weighing of vapor pressure deficit," Agricultural Water Management, Elsevier, vol. 266(C).
    11. Hou, Panpan & Chen, Dianyu & Wei, Xuehui & Hu, Xiaotao & Duan, Xingwu & Zhang, Jingying & Qiu, Lucheng & Zhang, Linlin, 2023. "Transpiration characteristics and environmental controls of orange orchards in the dry-hot valley region of southwest China," Agricultural Water Management, Elsevier, vol. 288(C).
    12. Chen, Dianyu & Hsu, Kuolin & Duan, Xingwu & Wang, Youke & Wei, Xinguang & Muhammad, Saifullah, 2020. "Bayesian analysis of jujube canopy transpiration models: Does embedding the key environmental factor in Jarvis canopy resistance sub-model always associate with improving transpiration modeling?," Agricultural Water Management, Elsevier, vol. 234(C).
    13. Chen, Dianyu & Wang, Youke & Wang, Xing & Nie, Zhenyi & Gao, Zhiyong & Zhang, Linlin, 2016. "Effects of branch removal on water use of rain-fed jujube (Ziziphus jujuba Mill.) plantations in Chinese semiarid Loess Plateau region," Agricultural Water Management, Elsevier, vol. 178(C), pages 258-270.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:252:y:2021:i:c:s037837742100192x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.