IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v247y2021ics0378377420322484.html
   My bibliography  Save this article

Can partial reduction of shoot biomass during early vegetative phase of chickpea save subsoil water for reproductive and pod filling?

Author

Listed:
  • Rachaputi, Rao C.N.
  • Sands, Doug
  • McKenzie, Kerry
  • Chauhan, Yash
  • Bell, Kerry
  • Seyoum, Solomon
  • Agius, Peter
  • Krosch, Stephen
  • Lehane, John

Abstract

The present study investigated if partial reduction of shoot dry matter during early vegetative growth phase of chickpea crop (cv. PBA Seamer) saves sub-soil water for reproductive growth and grain filling of the crop grown at 9 diverse environments. The environments were created by a combination of 3 sites (Emerald, Hermitage and Kingaroy), 3 planting windows (environments 1, 2, 3 at each site) with and without supplementary irrigation. The effects of environments on canopy management (partial reduction in shoot dry matter vs control) and irrigation treatments on the water uptake by roots, crop growth and yield performance and yield components were investigated. Crops in the planting windows (EN 1, 2, 3) experienced variable environments at each site. Days to 50% flowering and crop maturity reduced progressively from EN 1 to EN 3 at the three sites. The environment had significant effect on shoot biomass, yield and HI at the three sites (P < 0.01 or P < 0.0001). Environments had bigger effects on crop that partial reduction in shoot biomass (PRS). The PRS at early vegetative phase resulted in a 25% reduction in radiation intercepted but rapid compensatory growth that followed, resulted in minimal effect on shoot biomass and yield. The HI varied from 0.18 in EN 1 at Kingaroy to > 0.5 in EN 2 at Emerald. There was a trend for an increase in HI from EN 1 to EN 3 at all sites. The response to Irr, computed as the difference in peak shoot biomass and yield between the Irr and RF treatments, was the highest at Hermitage and the least at Emerald site. Vapour pressure deficit during reproductive phase accounted for the majority of variation in shoot biomass response to irrigation (r2 =0.66, P < 0.001) for total dry matter and (r2 =0.46, P < 0.01) for yield. The environments had a significant effect on radiation use efficiency and water use efficiency and the yield components including hundred seed weight.

Suggested Citation

  • Rachaputi, Rao C.N. & Sands, Doug & McKenzie, Kerry & Chauhan, Yash & Bell, Kerry & Seyoum, Solomon & Agius, Peter & Krosch, Stephen & Lehane, John, 2021. "Can partial reduction of shoot biomass during early vegetative phase of chickpea save subsoil water for reproductive and pod filling?," Agricultural Water Management, Elsevier, vol. 247(C).
  • Handle: RePEc:eee:agiwat:v:247:y:2021:i:c:s0378377420322484
    DOI: 10.1016/j.agwat.2020.106704
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377420322484
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2020.106704?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Oweis, T. Y. & Hachum, A. Y., 2003. "Improving water productivity in the dry areas of West Asia and North Africa," IWMI Books, Reports H032642, International Water Management Institute.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ehsan Qasemipour & Ali Abbasi & Farhad Tarahomi, 2020. "Water-Saving Scenarios Based on Input–Output Analysis and Virtual Water Concept: A Case in Iran," Sustainability, MDPI, vol. 12(3), pages 1-16, January.
    2. Li, Xiaolin & Tong, Ling & Niu, Jun & Kang, Shaozhong & Du, Taisheng & Li, Sien & Ding, Risheng, 2017. "Spatio-temporal distribution of irrigation water productivity and its driving factors for cereal crops in Hexi Corridor, Northwest China," Agricultural Water Management, Elsevier, vol. 179(C), pages 55-63.
    3. Kang, Shaozhong & Hao, Xinmei & Du, Taisheng & Tong, Ling & Su, Xiaoling & Lu, Hongna & Li, Xiaolin & Huo, Zailin & Li, Sien & Ding, Risheng, 2017. "Improving agricultural water productivity to ensure food security in China under changing environment: From research to practice," Agricultural Water Management, Elsevier, vol. 179(C), pages 5-17.
    4. Mohamed Kharrou & Michel Le Page & Ahmed Chehbouni & Vincent Simonneaux & Salah Er-Raki & Lionel Jarlan & Lahcen Ouzine & Said Khabba & Ghani Chehbouni, 2013. "Assessment of Equity and Adequacy of Water Delivery in Irrigation Systems Using Remote Sensing-Based Indicators in Semi-Arid Region, Morocco," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(13), pages 4697-4714, October.
    5. Araya, A. & Gowda, P.H. & Golden, B. & Foster, A.J. & Aguilar, J. & Currie, R. & Ciampitti, I.A. & Prasad, P.V.V., 2019. "Economic value and water productivity of major irrigated crops in the Ogallala aquifer region," Agricultural Water Management, Elsevier, vol. 214(C), pages 55-63.
    6. Molden, David & Oweis, T. Y. & Pasquale, S. & Kijne, Jacob W. & Hanjra, M. A. & Bindraban, P. S. & Bouman, Bas A. M. & Cook, S. & Erenstein, O. & Farahani, H. & Hachum, A. & Hoogeveen, J. & Mahoo, Hen, 2007. "Pathways for increasing agricultural water productivity," Book Chapters,, International Water Management Institute.
    7. Amarasinghe, Upali A. & Sharma, Bharat R., 2009. "Water productivity of food grains in India: exploring potential improvements," IWMI Books, Reports H042635, International Water Management Institute.
    8. Tellioglu, Isin & Konandreas, Panos, 2017. "Agricultural Policies, Trade and Sustainable Development in Egypt," National Policies, Trade and Sustainable Development 320158, International Centre for Trade and Sustainable Development (ICTSD).
    9. Molden, David & Oweis, Theib & Steduto, Pasquale & Bindraban, Prem & Hanjra, Munir A. & Kijne, Jacob, 2010. "Improving agricultural water productivity: Between optimism and caution," Agricultural Water Management, Elsevier, vol. 97(4), pages 528-535, April.
    10. Amarasinghe, Upali A. & Sharma, Bharat R., 2009. "Water productivity of food grains in India: exploring potential improvements," Book Chapters,, International Water Management Institute.
    11. Assefa, Shibeshi & Biazin, Birhanu & Muluneh, Alemayehu & Yimer, Fantaw & Haileslassie, Amare, 2016. "Rainwater harvesting for supplemental irrigation of onions in the southern dry lands of Ethiopia," Agricultural Water Management, Elsevier, vol. 178(C), pages 325-334.
    12. Metin Sezen, S. & Yazar, Attila, 2006. "Wheat yield response to line-source sprinkler irrigation in the arid Southeast Anatolia region of Turkey," Agricultural Water Management, Elsevier, vol. 81(1-2), pages 59-76, March.
    13. Oweis, Theib & Hachum, Ahmed, 2006. "Water harvesting and supplemental irrigation for improved water productivity of dry farming systems in West Asia and North Africa," Agricultural Water Management, Elsevier, vol. 80(1-3), pages 57-73, February.
    14. Joshi, Ganesh Raj & Bhandari, Ramchandra, 2022. "Climate Adaptation in Rain-fed Agriculture: Analyzing the Determinants of Supplemental Irrigation Practices in Nepal," Research on World Agricultural Economy, Nan Yang Academy of Sciences Pte Ltd (NASS), vol. 3(4), December.
    15. Pathak, P. & Sahrawat, K. L. & Wani, S. P. & Sachan, R. C. & Sudi, R., 2009. "Opportunities for water harvesting and supplemental irrigation for improving rainfed agriculture in semi-arid areas," IWMI Books, Reports H042000, International Water Management Institute.
    16. Cook, Simon, 2006. "Water productivity: measuring and mapping in benchmark basins. Estimation at plot, farm and basin scale," IWMI Working Papers H039742, International Water Management Institute.
    17. Giordano, Meredith & Turral, H. & Scheierling, S. M. & Treguer, D. O. & McCornick, Peter G, 2017. "Beyond “More Crop per Drop”: evolving thinking on agricultural water productivity," IWMI Research Reports 257962, International Water Management Institute.
    18. Bouman, B. A.M., 2007. "A conceptual framework for the improvement of crop water productivity at different spatial scales," Agricultural Systems, Elsevier, vol. 93(1-3), pages 43-60, March.
    19. Abdul Latief A. Al-Ghzawi & Yahya Bani Khalaf & Zakaria I. Al-Ajlouni & Nisreen A. AL-Quraan & Iyad Musallam & Nabeel Bani Hani, 2018. "The Effect of Supplemental Irrigation on Canopy Temperature Depression, Chlorophyll Content, and Water Use Efficiency in Three Wheat ( Triticum aestivum L. and T. durum Desf.) Varieties Grown in Dry R," Agriculture, MDPI, vol. 8(5), pages 1-23, May.
    20. Oweis, Theib & Hachum, Ahmed, 2009. "Optimizing supplemental irrigation: Tradeoffs between profitability and sustainability," Agricultural Water Management, Elsevier, vol. 96(3), pages 511-516, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:247:y:2021:i:c:s0378377420322484. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.