IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v246y2021ics0378377420322356.html
   My bibliography  Save this article

Coupled hydrology-crop growth model incorporating an improved evapotranspiration module

Author

Listed:
  • Zhang, Yuliang
  • Wu, Zhiyong
  • Singh, Vijay P.
  • He, Hai
  • He, Jian
  • Yin, Hao
  • Zhang, Yaxin

Abstract

Some hydrologic models oversimplify crop growth simulation. Although some studies coupled hydrologic models with crop models, there are several hypotheses and unconsidered factors in these studies, such as no irrigation. To improve simulation of discharge, soil moisture, and evapotranspiration, the Variable Infiltration Capacity (VIC) model was coupled with a crop growth model, incorporating an improved evapotranspiration module based on the soil water stress method. The new evapotranspiration module improved two water stress errors of the Environmental Policy Integrated Climate (EPIC) model. Considering the impact of agricultural irrigation and crop rotation, regional crop growth and hydrology were simulated in the upstream watershed of the Qingkou River in the east of China. Results of simulation by the Coupled Hydrology-Crop growth (CHC) model were compared with observed discharge data, measured soil moisture data, and evapotranspiration data obtained from remote sensing inversion. The daily Nash efficiency coefficient was 0.78 for the calibration period from 1978 to 2008 and was 0.76 for the verification period from 2009 to 2016. The simulated soil moisture was found to be significantly correlated with observed soil moisture, better than the simulation by the VIC model alone. The daily efficiency coefficient of the CHC model simulation increased by 0.13 for the verification period compared with that of the VIC model; and the transpiration module of the CHC model had the best simulation accuracy among the VIC, EPIC, and CHC transpiration modules. Combined with observed data, the reason for the water stress error of the EPIC model, reported by some references, was found: A parameter needs to be further adjusted combined with the actual condition instead of being constant. Thus, the coupled hydrology and crop growth model improved the simulation of hydrological elements and can help guide the efficient use of water resources and adjustment of agricultural cropping practices.

Suggested Citation

  • Zhang, Yuliang & Wu, Zhiyong & Singh, Vijay P. & He, Hai & He, Jian & Yin, Hao & Zhang, Yaxin, 2021. "Coupled hydrology-crop growth model incorporating an improved evapotranspiration module," Agricultural Water Management, Elsevier, vol. 246(C).
  • Handle: RePEc:eee:agiwat:v:246:y:2021:i:c:s0378377420322356
    DOI: 10.1016/j.agwat.2020.106691
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377420322356
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2020.106691?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Guihua Lu & Jingjing Liu & Zhiyong Wu & Hai He & Huating Xu & Qingxia Lin, 2015. "Development of a Large-Scale Routing Model with Scale Independent by Considering the Damping Effect of Sub-Basins," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(14), pages 5237-5253, November.
    2. Siad, Si Mokrane & Iacobellis, Vito & Zdruli, Pandi & Gioia, Andrea & Stavi, Ilan & Hoogenboom, Gerrit, 2019. "A review of coupled hydrologic and crop growth models," Agricultural Water Management, Elsevier, vol. 224(C), pages 1-1.
    3. Van Vosselen, A. & Verplancke, H. & Van Ranst, E., 2005. "Assessing water consumption of banana: traditional versus modelling approach," Agricultural Water Management, Elsevier, vol. 74(3), pages 201-218, June.
    4. Li, Yan & Zhou, Qingguo & Zhou, Jian & Zhang, Gaofeng & Chen, Chong & Wang, Jing, 2014. "Assimilating remote sensing information into a coupled hydrology-crop growth model to estimate regional maize yield in arid regions," Ecological Modelling, Elsevier, vol. 291(C), pages 15-27.
    5. Jean-François Pekel & Andrew Cottam & Noel Gorelick & Alan S. Belward, 2016. "High-resolution mapping of global surface water and its long-term changes," Nature, Nature, vol. 540(7633), pages 418-422, December.
    6. Patil, S. L. & Sheelavantar, M. N., 2004. "Effect of cultural practices on soil properties, moisture conservation and grain yield of winter sorghum (Sorghum bicolar L. Moench) in semi-arid tropics of India," Agricultural Water Management, Elsevier, vol. 64(1), pages 49-67, January.
    7. Gavilan, P. & Lorite, I.J. & Tornero, S. & Berengena, J., 2006. "Regional calibration of Hargreaves equation for estimating reference ET in a semiarid environment," Agricultural Water Management, Elsevier, vol. 81(3), pages 257-281, March.
    8. Nelson, R.A. & Dimes, J.P. & Paningbatan, E.P. & Silburn, D.M., 1998. "Erosion/productivity modelling of maize farming in the Philippine uplands: Part I: parameterising the Agricultural Production Systems Simulator," Agricultural Systems, Elsevier, vol. 58(2), pages 129-146, October.
    9. Liu, H.L. & Yang, J.Y. & Tan, C.S. & Drury, C.F. & Reynolds, W.D. & Zhang, T.Q. & Bai, Y.L. & Jin, J. & He, P. & Hoogenboom, G., 2011. "Simulating water content, crop yield and nitrate-N loss under free and controlled tile drainage with subsurface irrigation using the DSSAT model," Agricultural Water Management, Elsevier, vol. 98(6), pages 1105-1111, April.
    10. de Wit, Allard & Boogaard, Hendrik & Fumagalli, Davide & Janssen, Sander & Knapen, Rob & van Kraalingen, Daniel & Supit, Iwan & van der Wijngaart, Raymond & van Diepen, Kees, 2019. "25 years of the WOFOST cropping systems model," Agricultural Systems, Elsevier, vol. 168(C), pages 154-167.
    11. Rosa, R.D. & Ramos, T.B. & Pereira, L.S., 2016. "The dual Kc approach to assess maize and sweet sorghum transpiration and soil evaporation under saline conditions: Application of the SIMDualKc model," Agricultural Water Management, Elsevier, vol. 177(C), pages 77-94.
    12. Liu, Junguo & Williams, Jimmy R. & Zehnder, Alexander J.B. & Yang, Hong, 2007. "GEPIC - modelling wheat yield and crop water productivity with high resolution on a global scale," Agricultural Systems, Elsevier, vol. 94(2), pages 478-493, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sietz, Diana & Conradt, Tobias & Krysanova, Valentina & Hattermann, Fred F. & Wechsung, Frank, 2021. "The Crop Generator: Implementing crop rotations to effectively advance eco-hydrological modelling," Agricultural Systems, Elsevier, vol. 193(C).
    2. Hongfa Wang & Xinjian Guan & Yu Meng & Zening Wu & Kun Wang & Huiliang Wang, 2023. "Coupling Time and Non-Time Series Models to Simulate the Flood Depth at Urban Flooded Area," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(3), pages 1275-1295, February.
    3. Zhang, Yuliang & Wu, Zhiyong & Singh, Vijay P. & Lin, Qingxia & Ning, Shaowei & Zhou, Yuliang & Jin, Juliang & Zhou, Rongxing & Ma, Qiang, 2023. "Agricultural drought characteristics in a typical plain region considering irrigation, crop growth, and water demand impacts," Agricultural Water Management, Elsevier, vol. 282(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Xiangping & Huang, Guanhua & Yang, Jingsong & Huang, Quanzhong & Liu, Haijun & Yu, Lipeng, 2015. "An assessment of irrigation practices: Sprinkler irrigation of winter wheat in the North China Plain," Agricultural Water Management, Elsevier, vol. 159(C), pages 197-208.
    2. Cai, Liping & Wang, Hui & Liu, Yanxu & Fan, Donglin & Li, Xiaoxiao, 2022. "Is potential cultivated land expanding or shrinking in the dryland of China? Spatiotemporal evaluation based on remote sensing and SVM," Land Use Policy, Elsevier, vol. 112(C).
    3. Shi, Yinfang & Wang, Zhaoyang & Hou, Cheng & Zhang, Puhan, 2022. "Yield estimation of Lycium barbarum L. based on the WOFOST model," Ecological Modelling, Elsevier, vol. 473(C).
    4. Mary Ollenburger & Page Kyle & Xin Zhang, 2022. "Uncertainties in estimating global potential yields and their impacts for long-term modeling," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 14(5), pages 1177-1190, October.
    5. Kakoulaki, G. & Gonzalez Sanchez, R. & Gracia Amillo, A. & Szabo, S. & De Felice, M. & Farinosi, F. & De Felice, L. & Bisselink, B. & Seliger, R. & Kougias, I. & Jaeger-Waldau, A., 2023. "Benefits of pairing floating solar photovoltaics with hydropower reservoirs in Europe," Renewable and Sustainable Energy Reviews, Elsevier, vol. 171(C).
    6. Mahboobe Ghobadi & Mahdi Gheysari & Mohammad Shayannejad & Hamze Dokoohaki, 2023. "Analyzing the Effects of Planting Date on the Uncertainty of CERES-Maize and Its Potential to Reduce Yield Gap in Arid and Mediterranean Climates," Agriculture, MDPI, vol. 13(8), pages 1-17, July.
    7. Ren, Dongyang & Xu, Xu & Engel, Bernard & Huang, Quanzhong & Xiong, Yunwu & Huo, Zailin & Huang, Guanhua, 2021. "A comprehensive analysis of water productivity in natural vegetation and various crops coexistent agro-ecosystems," Agricultural Water Management, Elsevier, vol. 243(C).
    8. Giacomo Falchetta & Nicolò Stevanato & Magda Moner-Girona & Davide Mazzoni & Emanuela Colombo & Manfred Hafner, 2020. "M-LED: Multi-sectoral Latent Electricity Demand Assessment for Energy Access Planning," Working Papers 2020.09, Fondazione Eni Enrico Mattei.
    9. Dono, Gabriele & Cortignani, Raffaele & Doro, Luca & Giraldo, Luca & Ledda, Luigi & Pasqui, Massimiliano & Roggero, Pier Paolo, 2013. "Adapting to uncertainty associated with short-term climate variability changes in irrigated Mediterranean farming systems," Agricultural Systems, Elsevier, vol. 117(C), pages 1-12.
    10. Virna Estefania Moran-Rodas & Verena Preusse & Christine Wachendorf, 2022. "Agricultural Management Practices and Decision-Making in View of Soil Organic Matter in the Urbanizing Region of Bangalore," Sustainability, MDPI, vol. 14(10), pages 1-27, May.
    11. Zamani, Omid & Azadi, Hossein & Mortazavi, Seyed Abolghasem & Balali, Hamid & Moghaddam, Saghi Movahhed & Jurik, Lubos, 2021. "The impact of water-pricing policies on water productivity: Evidence of agriculture sector in Iran," Agricultural Water Management, Elsevier, vol. 245(C).
    12. Scheierling, Susanne M. & Treguer, David O. & Booker, James F. & Decker, Elisabeth, 2014. "How to assess agricultural water productivity ? looking for water in the agricultural productivity and efficiency literature," Policy Research Working Paper Series 6982, The World Bank.
    13. Berggreen, Steve & Mattisson, Linn, 2023. "The Curse of Bad Geography: Stagnant Water, Diseases, and Children’s Human Capital," Working Papers 2023:11, Lund University, Department of Economics.
    14. Nicolás Ruiz, Néstor & Suárez Alonso, María Luisa & Vidal-Abarca, María Rosario, 2021. "Contributions of dry rivers to human well-being: A global review for future research," Ecosystem Services, Elsevier, vol. 50(C).
    15. Jinlong Li & Genxu Wang & Chunlin Song & Shouqin Sun & Jiapei Ma & Ying Wang & Linmao Guo & Dongfeng Li, 2024. "Recent intensified erosion and massive sediment deposition in Tibetan Plateau rivers," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    16. Gavilán, P. & Castillo-Llanque, F., 2009. "Estimating reference evapotranspiration with atmometers in a semiarid environment," Agricultural Water Management, Elsevier, vol. 96(3), pages 465-472, March.
    17. Arjen Y. Hoekstra, 2017. "Water Footprint Assessment: Evolvement of a New Research Field," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(10), pages 3061-3081, August.
    18. Thomas, Timothy S., 2015. "US maize data reveals adaptation to heat and water stress:," IFPRI discussion papers 1485, International Food Policy Research Institute (IFPRI).
    19. Mohammad Zeynoddin & Hossein Bonakdari & Silvio José Gumiere & Alain N. Rousseau, 2023. "Multi-Tempo Forecasting of Soil Temperature Data; Application over Quebec, Canada," Sustainability, MDPI, vol. 15(12), pages 1-21, June.
    20. Xiong, Wei & Balkovič, Juraj & van der Velde, Marijn & Zhang, Xuesong & Izaurralde, R. César & Skalský, Rastislav & Lin, Erda & Mueller, Nathan & Obersteiner, Michael, 2014. "A calibration procedure to improve global rice yield simulations with EPIC," Ecological Modelling, Elsevier, vol. 273(C), pages 128-139.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:246:y:2021:i:c:s0378377420322356. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.