IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v241y2020ics0378377419319535.html
   My bibliography  Save this article

Effects of irrigation quantity and biochar on soil physical properties, growth characteristics, yield and quality of greenhouse tomato

Author

Listed:
  • Zhang, Chuan
  • Li, Xinyu
  • Yan, Haofang
  • Ullah, Ikram
  • Zuo, Zhiyu
  • Li, Lanlan
  • Yu, Jianjun

Abstract

Considering the challenges faced by current agricultural industry, such as less cultivable land, lack of soil nutrient value, limited water resources, low yield and fruit quality (Appearance and nutritional values). Biochar application was found effective way to improve soil physical properties, consequently, yield and quality of tomatoes. Biochar at three levels: B0 (0 ton/ha), B1 (25 tons/ha) and B2 (50 tons/ha) with three levels of drip irrigation quantity: full irrigation T1 (1.4 pan evaporation Ep), moderate water deficit T2 (1.2 Ep) and severe water deficit T3 (1.0 Ep) were applied in greenhouse. Thus, nine treatments, i.e. T1B0, T1B1, T1B2, T2B0, T2B1, T2B2, T3B0, T3B1 and T3B2 were set. The effects of applied different levels of irrigation quantity and biochar on soil physical properties, crop growth, yield and fruit quality were observed. Increasing level of applied irrigation quantity and biochar could improve the physical properties of soil effectively: decreased, increased and varied the soil bulk density, porosity and 3-phase composition of soil respectively. It is found that increasing levels of applied irrigation quantity at B2 had good effects on bulk density, porosity and 3-phase proportion of soil, and best composition of 3-phase (solid and pores: liquid + gas were 33.68 % and 66.32 % respectively) at T2B2 was found. The growth rate, considering growth parameters: plant height and stem diameter, was increased by applying adequate level of irrigation quantity and biochar. The yield was found maximum at T1B2, which was increased by 30.92 % as compared to T1B0. For T3 level, biochar application increased tomato yield, as compared to B0 by 83.69 % and 176.60 % at B1 and B2 respectively. It is concluded that application of biochar under full and severe deficit irrigation level increased tomato yield effectively, but tomato growth could inhibit under moderate water deficit irrigation, caused a slight yield reduction.

Suggested Citation

  • Zhang, Chuan & Li, Xinyu & Yan, Haofang & Ullah, Ikram & Zuo, Zhiyu & Li, Lanlan & Yu, Jianjun, 2020. "Effects of irrigation quantity and biochar on soil physical properties, growth characteristics, yield and quality of greenhouse tomato," Agricultural Water Management, Elsevier, vol. 241(C).
  • Handle: RePEc:eee:agiwat:v:241:y:2020:i:c:s0378377419319535
    DOI: 10.1016/j.agwat.2020.106263
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377419319535
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2020.106263?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Liu, Hao & Li, Huanhuan & Ning, Huifeng & Zhang, Xiaoxian & Li, Shuang & Pang, Jie & Wang, Guangshuai & Sun, Jingsheng, 2019. "Optimizing irrigation frequency and amount to balance yield, fruit quality and water use efficiency of greenhouse tomato," Agricultural Water Management, Elsevier, vol. 226(C).
    2. Faloye, O.T. & Alatise, M.O. & Ajayi, A.E. & Ewulo, B.S., 2019. "Effects of biochar and inorganic fertiliser applications on growth, yield and water use efficiency of maize under deficit irrigation," Agricultural Water Management, Elsevier, vol. 217(C), pages 165-178.
    3. Chen, Jinliang & Kang, Shaozhong & Du, Taisheng & Qiu, Rangjian & Guo, Ping & Chen, Renqiang, 2013. "Quantitative response of greenhouse tomato yield and quality to water deficit at different growth stages," Agricultural Water Management, Elsevier, vol. 129(C), pages 152-162.
    4. Chen, Jinliang & Kang, Shaozhong & Du, Taisheng & Guo, Ping & Qiu, Rangjian & Chen, Renqiang & Gu, Feng, 2014. "Modeling relations of tomato yield and fruit quality with water deficit at different growth stages under greenhouse condition," Agricultural Water Management, Elsevier, vol. 146(C), pages 131-148.
    5. Gong, Xuewen & Liu, Hao & Sun, Jingsheng & Gao, Yang & Zhang, Hao, 2019. "Comparison of Shuttleworth-Wallace model and dual crop coefficient method for estimating evapotranspiration of tomato cultivated in a solar greenhouse," Agricultural Water Management, Elsevier, vol. 217(C), pages 141-153.
    6. Zhang, Huimeng & Xiong, Yunwu & Huang, Guanhua & Xu, Xu & Huang, Quanzhong, 2017. "Effects of water stress on processing tomatoes yield, quality and water use efficiency with plastic mulched drip irrigation in sandy soil of the Hetao Irrigation District," Agricultural Water Management, Elsevier, vol. 179(C), pages 205-214.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Cong & Huang, Xian & Zhang, Xingwei & Wan, Li & Wang, Zhenhong, 2021. "Effects of biochar application on soil nitrogen and phosphorous leaching loss and oil peony growth," Agricultural Water Management, Elsevier, vol. 255(C).
    2. Masinde, Peter & Wahome, Bernard M., 2022. "The effect of biochar from rice husks on evapotranspiration, vegetative growth and fruit yield of greenhouse tomato cultivar anna F1 grown in two soil types," African Journal of Food, Agriculture, Nutrition and Development (AJFAND), African Journal of Food, Agriculture, Nutrition and Development (AJFAND), vol. 22(05).
    3. Wang, Xiaodong & Tian, Wei & Zheng, Wende & Shah, Sadiq & Li, Jianshe & Wang, Xiaozhuo & Zhang, Xueyan, 2023. "Quantitative relationships between salty water irrigation and tomato yield, quality, and irrigation water use efficiency: A meta-analysis," Agricultural Water Management, Elsevier, vol. 280(C).
    4. Wu, Zhuqing & Fan, Yaqiong & Qiu, Yuan & Hao, Xinmei & Li, Sien & Kang, Shaozhong, 2022. "Response of yield and quality of greenhouse tomatoes to water and salt stresses and biochar addition in Northwest China," Agricultural Water Management, Elsevier, vol. 270(C).
    5. Maria A. Lilli & Nikolaos V. Paranychianakis & Konstantinos Lionoudakis & Anna Kritikaki & Styliani Voutsadaki & Maria L. Saru & Konstantinos Komnitsas & Nikolaos P. Nikolaidis, 2023. "The Impact of Sewage-Sludge- and Olive-Mill-Waste-Derived Biochar Amendments to Tomato Cultivation," Sustainability, MDPI, vol. 15(5), pages 1-15, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gong, Xuewen & Li, Xiaoming & Qiu, Rangjian & Bo, Guokui & Ping, Yinglu & Xin, Qingsong & Ge, Jiankun, 2022. "Ventilation and irrigation management strategy for tomato cultivated in greenhouses," Agricultural Water Management, Elsevier, vol. 273(C).
    2. Qu, Zhaoming & Chen, Qi & Feng, Haojie & Hao, Miao & Niu, Guoliang & Liu, Yanli & Li, Chengliang, 2022. "Interactive effect of irrigation and blend ratio of controlled release potassium chloride and potassium chloride on greenhouse tomato production in the Yellow River Basin of China," Agricultural Water Management, Elsevier, vol. 261(C).
    3. Li, Huanhuan & Liu, Hao & Gong, Xuewen & Li, Shuang & Pang, Jie & Chen, Zhifang & Sun, Jingsheng, 2021. "Optimizing irrigation and nitrogen management strategy to trade off yield, crop water productivity, nitrogen use efficiency and fruit quality of greenhouse grown tomato," Agricultural Water Management, Elsevier, vol. 245(C).
    4. Guo, Lijie & Cao, Hongxia & Helgason, Warren D. & Yang, Hui & Wu, Xuanyi & Li, Hongzheng, 2022. "Effect of drip-line layout and irrigation amount on yield, irrigation water use efficiency, and quality of short-season tomato in Northwest China," Agricultural Water Management, Elsevier, vol. 270(C).
    5. Zhou, Huiping & Chen, Jinliang & Wang, Feng & Li, Xiaojuan & GĂ©nard, Michel & Kang, Shaozhong, 2020. "An integrated irrigation strategy for water-saving and quality-improving of cash crops: Theory and practice in China," Agricultural Water Management, Elsevier, vol. 241(C).
    6. Li Yang & Haijun Liu & Shabtai Cohen & Zhuangzhuang Gao, 2022. "Microclimate and Plant Transpiration of Tomato ( Solanum lycopersicum L.) in a Sunken Solar Greenhouse in North China," Agriculture, MDPI, vol. 12(2), pages 1-21, February.
    7. Jeet Chand & Guna Hewa & Ali Hassanli & Baden Myers, 2020. "Evaluation of Deficit Irrigation and Water Quality on Production and Water Productivity of Tomato in Greenhouse," Agriculture, MDPI, vol. 10(7), pages 1-18, July.
    8. Wu, You & Yan, Shicheng & Fan, Junliang & Zhang, Fucang & Zhao, Wenju & Zheng, Jing & Guo, Jinjin & Xiang, Youzhen & Wu, Lifeng, 2022. "Combined effects of irrigation level and fertilization practice on yield, economic benefit and water-nitrogen use efficiency of drip-irrigated greenhouse tomato," Agricultural Water Management, Elsevier, vol. 262(C).
    9. Kang, Jian & Hao, Xinmei & Zhou, Huiping & Ding, Risheng, 2021. "An integrated strategy for improving water use efficiency by understanding physiological mechanisms of crops responding to water deficit: Present and prospect," Agricultural Water Management, Elsevier, vol. 255(C).
    10. Baoying Shan & Ping Guo & Shanshan Guo & Zhong Li, 2019. "A Price-Forecast-Based Irrigation Scheduling Optimization Model under the Response of Fruit Quality and Price to Water," Sustainability, MDPI, vol. 11(7), pages 1-21, April.
    11. Qu, Zhaoming & Qi, Xingchao & Liu, Yanli & Liu, Kexin & Li, Chengliang, 2020. "Interactive effect of irrigation and polymer-coated potassium chloride on tomato production in a greenhouse," Agricultural Water Management, Elsevier, vol. 235(C).
    12. Rosa Francaviglia & Claudia Di Bene, 2019. "Deficit Drip Irrigation in Processing Tomato Production in the Mediterranean Basin. A Data Analysis for Italy," Agriculture, MDPI, vol. 9(4), pages 1-14, April.
    13. Wu, Zhuqing & Fan, Yaqiong & Qiu, Yuan & Hao, Xinmei & Li, Sien & Kang, Shaozhong, 2022. "Response of yield and quality of greenhouse tomatoes to water and salt stresses and biochar addition in Northwest China," Agricultural Water Management, Elsevier, vol. 270(C).
    14. Yang, Hui & Du, Taisheng & Mao, Xiaomin & Ding, Risheng & Shukla, Manoj K., 2019. "A comprehensive method of evaluating the impact of drought and salt stress on tomato growth and fruit quality based on EPIC growth model," Agricultural Water Management, Elsevier, vol. 213(C), pages 116-127.
    15. Liu, Hao & Li, Huanhuan & Ning, Huifeng & Zhang, Xiaoxian & Li, Shuang & Pang, Jie & Wang, Guangshuai & Sun, Jingsheng, 2019. "Optimizing irrigation frequency and amount to balance yield, fruit quality and water use efficiency of greenhouse tomato," Agricultural Water Management, Elsevier, vol. 226(C).
    16. Indranil Samui & Milan Skalicky & Sukamal Sarkar & Koushik Brahmachari & Sayan Sau & Krishnendu Ray & Akbar Hossain & Argha Ghosh & Manoj Kumar Nanda & Richard W. Bell & Mohammed Mainuddin & Marian Br, 2020. "Yield Response, Nutritional Quality and Water Productivity of Tomato ( Solanum lycopersicum L.) are Influenced by Drip Irrigation and Straw Mulch in the Coastal Saline Ecosystem of Ganges Delta, India," Sustainability, MDPI, vol. 12(17), pages 1-21, August.
    17. Singh, Manpreet & Singh, Sukhbir & Deb, Sanjit & Ritchie, Glen, 2023. "Root distribution, soil water depletion, and water productivity of sweet corn under deficit irrigation and biochar application," Agricultural Water Management, Elsevier, vol. 279(C).
    18. Lu, Jia & Shao, Guangcheng & Gao, Yang & Zhang, Kun & Wei, Qun & Cheng, Jifan, 2021. "Effects of water deficit combined with soil texture, soil bulk density and tomato variety on tomato fruit quality: A meta-analysis," Agricultural Water Management, Elsevier, vol. 243(C).
    19. Zhang, Dalong & Jiao, Xiaocong & Du, Qingjie & Song, Xiaoming & Li, Jianming, 2018. "Reducing the excessive evaporative demand improved photosynthesis capacity at low costs of irrigation via regulating water driving force and moderating plant water stress of two tomato cultivars," Agricultural Water Management, Elsevier, vol. 199(C), pages 22-33.
    20. Lu, Jia & Shao, Guangcheng & Cui, Jintao & Wang, Xiaojun & Keabetswe, Larona, 2019. "Yield, fruit quality and water use efficiency of tomato for processing under regulated deficit irrigation: A meta-analysis," Agricultural Water Management, Elsevier, vol. 222(C), pages 301-312.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:241:y:2020:i:c:s0378377419319535. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.