IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v236y2020ics0378377419318475.html
   My bibliography  Save this article

Quality characteristics and chemical evaluation of Chemlali olive oil produced under dairy wastewater irrigation

Author

Listed:
  • Sdiri, Wiem
  • Dabbou, Samia
  • Chehab, Hechmi
  • Selvaggini, Roberto
  • Servili, Maurizio
  • Di Bella, Giuseppa
  • Mansour, Hedi Ben

Abstract

The present work aimed to study the effect of using Treated Wastewater (TWW) to irrigate Chemlali olive trees on the quality characteristics and chemical composition of olive oils. This research was conducted in orchards cultivated in the center of Tunisia where olive trees were subjected to different irrigation treatments during two consecutive years; (CT) 0 % ETc, (T1) 20 % ETc and (T2) 40 % ETc. Results showed that irrigation with TWW whatever the level didn’t significantly affect oil standard quality indices (free acidity, K232, K270 and peroxide value) and pigment contents. Furthermore, α-tocopherol amount was maintained stable which may explain the preservation of fatty acids against oxidation after TWW irrigation. Moreover, this last did not induce phenolic compounds contents variation. A decrease of some volatile compounds giving oil undesirable attributes (octanal and acetic acid) and a maintain of those offering good characteristics like the fruity odor were observed.

Suggested Citation

  • Sdiri, Wiem & Dabbou, Samia & Chehab, Hechmi & Selvaggini, Roberto & Servili, Maurizio & Di Bella, Giuseppa & Mansour, Hedi Ben, 2020. "Quality characteristics and chemical evaluation of Chemlali olive oil produced under dairy wastewater irrigation," Agricultural Water Management, Elsevier, vol. 236(C).
  • Handle: RePEc:eee:agiwat:v:236:y:2020:i:c:s0378377419318475
    DOI: 10.1016/j.agwat.2020.106124
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377419318475
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2020.106124?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Tekaya, Meriem & Mechri, Beligh & Dabbaghi, Olfa & Mahjoub, Zoubeir & Laamari, Salwa & Chihaoui, Badreddine & Boujnah, Dalenda & Hammami, Mohamed & Chehab, Hechmi, 2016. "Changes in key photosynthetic parameters of olive trees following soil tillage and wastewater irrigation, modified olive oil quality," Agricultural Water Management, Elsevier, vol. 178(C), pages 180-188.
    2. Bedbabis, Saida & Trigui, Dhouha & Ben Ahmed, Chedlia & Clodoveo, Maria Lisa & Camposeo, Salvatore & Vivaldi, Gaetano Alessandro & Ben Rouina, Béchir, 2015. "Long-terms effects of irrigation with treated municipal wastewater on soil, yield and olive oil quality," Agricultural Water Management, Elsevier, vol. 160(C), pages 14-21.
    3. Bourazanis, G. & Roussos, P.A. & Argyrokastritis, I. & Kosmas, C. & Kerkides, P., 2016. "Evaluation of the use of treated municipal waste water on the yield, oil quality, free fatty acids’ profile and nutrient levels in olive trees cv Koroneiki, in Greece," Agricultural Water Management, Elsevier, vol. 163(C), pages 1-8.
    4. Lodolini, E.M. & Ali, S. & Mutawea, M. & Qutub, M. & Arabasi, T. & Pierini, F. & Neri, D., 2014. "Complementary irrigation for sustainable production in olive groves in Palestine," Agricultural Water Management, Elsevier, vol. 134(C), pages 104-109.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wiem Sdiri & Huda S. AlSalem & Soha T. Al-Goul & Mona S. Binkadem & Hedi Ben Mansour, 2023. "Assessing the Effects of Treated Wastewater Irrigation on Soil Physico-Chemical Properties," Sustainability, MDPI, vol. 15(7), pages 1-12, March.
    2. Amira Oueslati & Samia Dabbou & Nosra Methneni & Giuseppe Montevecchi & Vincenzo Nava & Rossana Rando & Giovanni Bartolomeo & Andrea Antonelli & Giuseppa Di Bella & Hedi Ben Mansour, 2023. "Pomological and Olive Oil Quality Characteristics Evaluation under Short Time Irrigation of Olive Trees cv. Chemlali with Untreated Industrial Poultry Wastewater," Sustainability, MDPI, vol. 15(5), pages 1-17, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pedrero, Francisco & Grattan, S.R. & Ben-Gal, Alon & Vivaldi, Gaetano Alessandro, 2020. "Opportunities for expanding the use of wastewaters for irrigation of olives," Agricultural Water Management, Elsevier, vol. 241(C).
    2. Chehab, Hechmi & Tekaya, Meriem & Hajlaoui, Hichem & Abdelhamid, Sofiane & Gouiaa, Mohamed & Sfina, Hanene & Chihaoui, Badreddine & Boujnah, Dalenda & Mechri, Beligh, 2020. "Complementary irrigation with saline water and soil organic amendments modified soil salinity, leaf Na+, productivity and oil phenols of olive trees (cv. Chemlali) grown under semiarid conditions," Agricultural Water Management, Elsevier, vol. 237(C).
    3. Ben Hassena, Ameni & Zouari, Mohamed & Trabelsi, Lina & Khabou, Wahid & Zouari, Nacim, 2018. "Physiological improvements of young olive tree (Olea europaea L. cv. Chetoui) under short term irrigation with treated wastewater," Agricultural Water Management, Elsevier, vol. 207(C), pages 53-58.
    4. Gao, Yang & Shao, Guangcheng & Wu, Shiqing & Xiaojun, Wang & Lu, Jia & Cui, Jintao, 2021. "Changes in soil salinity under treated wastewater irrigation: A meta-analysis," Agricultural Water Management, Elsevier, vol. 255(C).
    5. Erel, Ran & Eppel, Amir & Yermiyahu, Uri & Ben-Gal, Alon & Levy, Guy & Zipori, Isaac & Schaumann, Gabriele E. & Mayer, Oliver & Dag, Arnon, 2019. "Long-term irrigation with reclaimed wastewater: Implications on nutrient management, soil chemistry and olive (Olea europaea L.) performance," Agricultural Water Management, Elsevier, vol. 213(C), pages 324-335.
    6. Konstantina Fotia & George Nanos & Pantelis Barouchas & Markos Giannelos & Aikaterini Linardi & Aikaterini Vallianatou & Paraskevi Mpeza & Ioannis Tsirogiannis, 2022. "Growth Development, Physiological Status and Water Footprint Assessment of Nursery Young Olive Trees ( Olea europaea L. ‘Konservolea’) Irrigated with Urban Treated Wastewater," Resources, MDPI, vol. 11(5), pages 1-14, April.
    7. Tekaya, Meriem & Mechri, Beligh & Dabbaghi, Olfa & Mahjoub, Zoubeir & Laamari, Salwa & Chihaoui, Badreddine & Boujnah, Dalenda & Hammami, Mohamed & Chehab, Hechmi, 2016. "Changes in key photosynthetic parameters of olive trees following soil tillage and wastewater irrigation, modified olive oil quality," Agricultural Water Management, Elsevier, vol. 178(C), pages 180-188.
    8. Wiem Sdiri & Huda S. AlSalem & Soha T. Al-Goul & Mona S. Binkadem & Hedi Ben Mansour, 2023. "Assessing the Effects of Treated Wastewater Irrigation on Soil Physico-Chemical Properties," Sustainability, MDPI, vol. 15(7), pages 1-12, March.
    9. Amira Oueslati & Samia Dabbou & Nosra Methneni & Giuseppe Montevecchi & Vincenzo Nava & Rossana Rando & Giovanni Bartolomeo & Andrea Antonelli & Giuseppa Di Bella & Hedi Ben Mansour, 2023. "Pomological and Olive Oil Quality Characteristics Evaluation under Short Time Irrigation of Olive Trees cv. Chemlali with Untreated Industrial Poultry Wastewater," Sustainability, MDPI, vol. 15(5), pages 1-17, February.
    10. Oliver Maaß & Philipp Grundmann, 2018. "Governing Transactions and Interdependences between Linked Value Chains in a Circular Economy: The Case of Wastewater Reuse in Braunschweig (Germany)," Sustainability, MDPI, vol. 10(4), pages 1-29, April.
    11. Ramos, Tiago B. & Darouich, Hanaa & Šimůnek, Jiří & Gonçalves, Maria C. & Martins, José C., 2019. "Soil salinization in very high-density olive orchards grown in southern Portugal: Current risks and possible trends," Agricultural Water Management, Elsevier, vol. 217(C), pages 265-281.
    12. Zhou, Yunpeng & Zhou, Bo & Xu, Feipeng & Muhammad, Tahir & Li, Yunkai, 2019. "Appropriate dissolved oxygen concentration and application stage of micro-nano bubble water oxygation in greenhouse crop plantation," Agricultural Water Management, Elsevier, vol. 223(C), pages 1-1.
    13. Varvara Andreou & Sofia Chanioti & Panagiota Stergiou & George Katsaros, 2021. "Valorization of the Olive Oil Production Residue: Healthy Ingredient for Developing High Value-Added Spread," Sustainability, MDPI, vol. 13(24), pages 1-18, December.
    14. Alcaide Zaragoza, Carmen & Fernández García, Irene & Martín García, Isabel & Camacho Poyato, Emilio & Rodríguez Díaz, Juan Antonio, 2022. "Spatio-temporal analysis of nitrogen variations in an irrigation distribution network using reclaimed water for irrigating olive trees," Agricultural Water Management, Elsevier, vol. 262(C).
    15. Shannag, Hail K. & Al-Mefleh, Naji K. & Freihat, Nawaf M., 2021. "Reuse of wastewaters in irrigation of broad bean and their effect on plant-aphid interaction," Agricultural Water Management, Elsevier, vol. 257(C).
    16. Ahumada-Orellana, Luis E. & Ortega-Farías, Samuel & Searles, Peter S., 2018. "Olive oil quality response to irrigation cut-off strategies in a super-high density orchard," Agricultural Water Management, Elsevier, vol. 202(C), pages 81-88.
    17. Nicoleta Ungureanu & Valentin Vlăduț & Gheorghe Voicu, 2020. "Water Scarcity and Wastewater Reuse in Crop Irrigation," Sustainability, MDPI, vol. 12(21), pages 1-18, October.
    18. Bey, M. & Hamidat, A. & Nacer, T., 2021. "Eco-energetic feasibility study of using grid-connected photovoltaic system in wastewater treatment plant," Energy, Elsevier, vol. 216(C).
    19. Giacalone, F. & Papapetrou, M. & Kosmadakis, G. & Tamburini, A. & Micale, G. & Cipollina, A., 2019. "Application of reverse electrodialysis to site-specific types of saline solutions: A techno-economic assessment," Energy, Elsevier, vol. 181(C), pages 532-547.
    20. Maaß, Oliver & Grundmann, Philipp, 2016. "Added-value from linking the value chains of wastewater treatment, crop production and bioenergy production: A case study on reusing wastewater and sludge in crop production in Braunschweig (Germany)," Resources, Conservation & Recycling, Elsevier, vol. 107(C), pages 195-211.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:236:y:2020:i:c:s0378377419318475. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.