IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v227y2020ics0378377419308595.html
   My bibliography  Save this article

Effects of subsoiling before winter wheat on water consumption characteristics and yield of summer maize on the North China Plain

Author

Listed:
  • Kuang, Naikun
  • Tan, Dechong
  • Li, Haojie
  • Gou, Qishu
  • Li, Quanqi
  • Han, Huifang

Abstract

As an important industry for national development, summer maize production occupies a key position in China and globally. However, agricultural water consumption is becoming increasingly problematic, and global climate change and long-term traditional rotary tillage have negative effects on the soil surface layer. Subsoiling has been an effective measure to improve soil surface-layer structure and increase yield. In the present study, field experiments were conducted to compare the effects of subsoiling and rotary tillage in winter wheat and summer maize double cropping systems. Subsoiling treatments at a depth of 40 cm (S40) and 35 cm (S35), and rotary tillage at a depth of 15 cm (R15) before winter wheat planting were used, and the effects of tillage methods on soil stable infiltration rate, soil water consumption, evapotranspiration, grain yield, and crop water productivity (CWP) in summer maize growing seasons were determined. The results showed that subsoiling significantly improved soil infiltration rate. Water consumption in the subsoiling treatments increased significantly, and especially promoted the crops to utilize soil water at depths below 60 cm in the soil profile. As a result, compared with R15, kernel numbers per row and 1000–grain weight in S35 were significantly increased; therefore, both grain yield and CWP were significantly improved. Our results indicate that the S35 treatment is a reasonable subsoiling measure on the North China Plain, which can increase both summer maize grain yield and CWP in double cropping systems.

Suggested Citation

  • Kuang, Naikun & Tan, Dechong & Li, Haojie & Gou, Qishu & Li, Quanqi & Han, Huifang, 2020. "Effects of subsoiling before winter wheat on water consumption characteristics and yield of summer maize on the North China Plain," Agricultural Water Management, Elsevier, vol. 227(C).
  • Handle: RePEc:eee:agiwat:v:227:y:2020:i:c:s0378377419308595
    DOI: 10.1016/j.agwat.2019.105786
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377419308595
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2019.105786?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kaur, Rajbir & Arora, VK, 2019. "Deep tillage and residue mulch effects on productivity and water and nitrogen economy of spring maize in north-west India," Agricultural Water Management, Elsevier, vol. 213(C), pages 724-731.
    2. Yan, Zhenxing & Gao, Chao & Ren, Yujie & Zong, Rui & Ma, Yuzhao & Li, Quanqi, 2017. "Effects of pre-sowing irrigation and straw mulching on the grain yield and water use efficiency of summer maize in the North China Plain," Agricultural Water Management, Elsevier, vol. 186(C), pages 21-28.
    3. Faramarzi, Monireh & Yang, Hong & Schulin, Rainer & Abbaspour, Karim C., 2010. "Modeling wheat yield and crop water productivity in Iran: Implications of agricultural water management for wheat production," Agricultural Water Management, Elsevier, vol. 97(11), pages 1861-1875, November.
    4. Li, Quanqi & Dong, Baodi & Qiao, Yunzhou & Liu, Mengyu & Zhang, Jiwang, 2010. "Root growth, available soil water, and water-use efficiency of winter wheat under different irrigation regimes applied at different growth stages in North China," Agricultural Water Management, Elsevier, vol. 97(10), pages 1676-1682, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xiaoman Qiang & Jingsheng Sun & Huifeng Ning, 2022. "Impact of Subsoiling on Cultivated Horizon Construction and Grain Yield of Winter Wheat in the North China Plain," Agriculture, MDPI, vol. 12(2), pages 1-13, February.
    2. Pengchong Zhou & Shaobo Wang & Liangliang Guo & Ying Shen & Huifang Han & Tangyuan Ning, 2019. "Effects of subsoiling stage on summer maize water use efficiency and yield in North China Plains," Plant, Soil and Environment, Czech Academy of Agricultural Sciences, vol. 65(11), pages 556-562.
    3. Lishu Wang & Haigang Guo & Lixuan Wang & Dongjuan Cheng, 2022. "Suitable Tillage Depth Promotes Maize Yields by Changing Soil Physical and Chemical Properties in A 3-Year Experiment in the North China Plain," Sustainability, MDPI, vol. 14(22), pages 1-16, November.
    4. Jiao, Fengli & Hong, Shengzhe & Cui, Jichao & Zhang, Qingfen & Li, Ming & Shi, Ruilin & Han, Huifang & Li, Quanqi, 2022. "Subsoiling combined with irrigation improves carbon emission and crop water productivity of winter wheat in North China Plain," Agricultural Water Management, Elsevier, vol. 269(C).
    5. Ding, Jinli & Wu, Jicheng & Ding, Dianyuan & Yang, Yonghui & Gao, Cuimin & Hu, Wei, 2021. "Effects of tillage and straw mulching on the crop productivity and hydrothermal resource utilization in a winter wheat-summer maize rotation system," Agricultural Water Management, Elsevier, vol. 254(C).
    6. Zhai, Lichao & Wang, Zhanbiao & Song, Shijia & Zhang, Lihua & Zhang, Zhengbin & Jia, Xiuling, 2021. "Tillage practices affects the grain filling of inferior kernel of summer maize by regulating soil water content and photosynthetic capacity," Agricultural Water Management, Elsevier, vol. 245(C).
    7. Yin, Baozhong & Hu, Zhaohui & Wang, Yandong & Zhao, Jin & Pan, Zhihua & Zhen, Wenchao, 2021. "Effects of optimized subsoiling tillage on field water conservation and summer maize (Zea mays L.) yield in the North China Plain," Agricultural Water Management, Elsevier, vol. 247(C).
    8. Rix, Jacob P. & Lo, Tsz Him & Gholson, Drew M. & Pringle, H.C. (Lyle) & Spencer, G. Dave & Singh, Gurbir, 2022. "Effects of low-till parabolic subsoiling frequency and furrow irrigation frequency on maize in the Yazoo-Mississippi Delta," Agricultural Water Management, Elsevier, vol. 274(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Guo, Liangliang & Wang, Xuejie & Wang, Shaobo & Tan, Dechong & Han, Huifang & Ning, Tangyuan & Li, Quanqi, 2019. "Tillage and irrigation effects on carbon emissions and water use of summer maize in North China Plains," Agricultural Water Management, Elsevier, vol. 223(C), pages 1-1.
    2. Wang, Bo & van Dam, Jos & Yang, Xiaolin & Ritsema, Coen & Du, Taisheng & Kang, Shaozhong, 2023. "Reducing water productivity gap by optimizing irrigation regime for winter wheat-summer maize system in the North China Plain," Agricultural Water Management, Elsevier, vol. 280(C).
    3. Wei, Shiyu & Kuang, Naikun & Jiao, Fengli & Zong, Rui & Li, Quanqi, 2023. "Exploring the effects of subsoiling tillage under various irrigation regimes on the evapotranspiration and crop water productivity of winter wheat using RZWQM2," Agricultural Water Management, Elsevier, vol. 289(C).
    4. Kuang, Naikun & Ma, Yuzhao & Hong, Shengzhe & Jiao, Fengli & Liu, Changyuan & Li, Quanqi & Han, Huifang, 2021. "Simulation of soil moisture dynamics, evapotranspiration, and water drainage of summer maize in response to different depths of subsoiling with RZWQM2," Agricultural Water Management, Elsevier, vol. 249(C).
    5. Zamani, Omid & Azadi, Hossein & Mortazavi, Seyed Abolghasem & Balali, Hamid & Moghaddam, Saghi Movahhed & Jurik, Lubos, 2021. "The impact of water-pricing policies on water productivity: Evidence of agriculture sector in Iran," Agricultural Water Management, Elsevier, vol. 245(C).
    6. Wu, Hao & Xu, Min & Peng, Zhuoyue & Chen, Xiaoping, 2022. "Quantifying the potential impacts of meltwater on cotton yields in the Tarim River Basin, Central Asia," Agricultural Water Management, Elsevier, vol. 269(C).
    7. Zhang, Yanqun & Wang, Jiandong & Gong, Shihong & Xu, Di & Mo, Yan & Zhang, Baozhong, 2021. "Straw mulching improves soil water content, increases flag leaf photosynthetic parameters and maintaines the yield of winter wheat with different irrigation amounts," Agricultural Water Management, Elsevier, vol. 249(C).
    8. Li, Haoru & Li, Xiaoli & Mei, Xurong & Nangia, Vinay & Guo, Rui & Hao, Weiping & Wang, Jiandong, 2023. "An alternative water-fertilizer-saving management practice for wheat-maize cropping system in the North China Plain: Based on a 4-year field study," Agricultural Water Management, Elsevier, vol. 276(C).
    9. Anantha, K.H. & Garg, Kaushal K. & Barron, Jennie & Dixit, Sreenath & Venkataradha, A. & Singh, Ramesh & Whitbread, Anthony M., 2021. "Impact of best management practices on sustainable crop production and climate resilience in smallholder farming systems of South Asia," Agricultural Systems, Elsevier, vol. 194(C).
    10. Nouri, Milad & Homaee, Mehdi & Pereira, Luis S. & Bybordi, Mohammad, 2023. "Water management dilemma in the agricultural sector of Iran: A review focusing on water governance," Agricultural Water Management, Elsevier, vol. 288(C).
    11. Kaur, Lovepreet & Kaur, Anureet & Brar, A.S., 2021. "Water use efficiency of green gram (Vigna radiata L.) impacted by paddy straw mulch and irrigation regimes in north-western India," Agricultural Water Management, Elsevier, vol. 258(C).
    12. Xiao, Xuechen & Zang, Hecang & Liu, Yang & Zhang, Zhen & Liu, Ying & Ejaz, Irsa & Du, Chenghang & Wang, Zhimin & Sun, Zhencai & Zhang, Yinghua, 2023. "Promoting winter wheat sustainable intensification by higher nitrogen distribution in top second to fourth leaves under water-restricted condition in North China Plain," Agricultural Water Management, Elsevier, vol. 289(C).
    13. Haiming Yan & Jinyan Zhan & Bing Liu & Yongwei Yuan, 2014. "Model Estimation of Water Use Efficiency for Soil Conservation in the Lower Heihe River Basin, Northwest China during 2000–2008," Sustainability, MDPI, vol. 6(9), pages 1-17, September.
    14. Iqbal, M. Anjum & Shen, Yanjun & Stricevic, Ruzica & Pei, Hongwei & Sun, Hongyoung & Amiri, Ebrahim & Penas, Angel & del Rio, Sara, 2014. "Evaluation of the FAO AquaCrop model for winter wheat on the North China Plain under deficit irrigation from field experiment to regional yield simulation," Agricultural Water Management, Elsevier, vol. 135(C), pages 61-72.
    15. Wang, Xiangping & Huang, Guanhua & Yang, Jingsong & Huang, Quanzhong & Liu, Haijun & Yu, Lipeng, 2015. "An assessment of irrigation practices: Sprinkler irrigation of winter wheat in the North China Plain," Agricultural Water Management, Elsevier, vol. 159(C), pages 197-208.
    16. You, Yongliang & Song, Ping & Yang, Xianlong & Zheng, Yapeng & Dong, Li & Chen, Jing, 2022. "Optimizing irrigation for winter wheat to maximize yield and maintain high-efficient water use in a semi-arid environment," Agricultural Water Management, Elsevier, vol. 273(C).
    17. Yang, Meijian & Wang, Guiling & Lazin, Rehenuma & Shen, Xinyi & Anagnostou, Emmanouil, 2021. "Impact of planting time soil moisture on cereal crop yield in the Upper Blue Nile Basin: A novel insight towards agricultural water management," Agricultural Water Management, Elsevier, vol. 243(C).
    18. Lu, Junsheng & Xiang, Youzhen & Fan, Junliang & Zhang, Fucang & Hu, Tiantian, 2021. "Sustainable high grain yield, nitrogen use efficiency and water productivity can be achieved in wheat-maize rotation system by changing irrigation and fertilization strategy," Agricultural Water Management, Elsevier, vol. 258(C).
    19. Zhang, Guangxin & Meng, Wenhui & Pan, Wenhui & Han, Juan & Liao, Yuncheng, 2022. "Effect of soil water content changes caused by ridge-furrow plastic film mulching on the root distribution and water use pattern of spring maize in the Loess Plateau," Agricultural Water Management, Elsevier, vol. 261(C).
    20. Li, Jinpeng & Wang, Yunqi & Zhang, Meng & Liu, Yang & Xu, Xuexin & Lin, Gang & Wang, Zhimin & Yang, Youming & Zhang, Yinghua, 2019. "Optimized micro-sprinkling irrigation scheduling improves grain yield by increasing the uptake and utilization of water and nitrogen during grain filling in winter wheat," Agricultural Water Management, Elsevier, vol. 211(C), pages 59-69.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:227:y:2020:i:c:s0378377419308595. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.