IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v202y2018icp66-80.html
   My bibliography  Save this article

Deficit irrigation and transparent plastic covers can save water and improve grapevine cultivation in the tropics

Author

Listed:
  • da Silva, Jefferson Rangel
  • Rodrigues, Weverton Pereira
  • Ferreira, Luciene Souza
  • Bernado, Wallace de Paula
  • Paixão, Jéssica Sousa
  • Patterson, Angelica Eloisa
  • Ruas, Katherine Fraga
  • Viana, Leandro Hespanhol
  • de Sousa, Elias Fernandes
  • Bressan-Smith, Ricardo Enrique
  • Poni, Stefano
  • Griffin, Kevin Lee
  • Campostrini, Eliemar

Abstract

We examined the interactive effects of deficit irrigation and transparent plastic covering (TPC) on key physiological traits in tropically grown grapevines. ‘Niagara Rosada’ grapevine (Vitis labrusca) was subjected to both Regulated Deficit Irrigation (RDI) and Partial Rootzone Drying (PRD) while being grown under a TPC to address the following questions: (i) Does the grapevine present anisohydric or isohydric behavior? (ii) How does deficit irrigation affect leaf water potential (Ψ)? (iii) Can RDI and PRD improve plant́s water use efficiency? (iv) How does deficit irrigation affect leaf photochemical and biochemical capacity? (v) What are the effects of deficit irrigation on leaf respiration and leaf carbon balance? (vi) Is it possible to save water without affecting yield and fruit quality? Three water management techniques were applied: full-irrigated (FI): 100% of the crop evapotranspiration (ETc) was supplied to both sides of the root system; RDI: 50% of the ETc was supplied to both sides of the root system; and PRD: 50% of ETc was alternately supplied to only one side of the root system. These irrigation treatments were replicated such that the two plots were either covered by a polyethylene plastic structure or remained uncovered. We found that: (i) ‘Niagara Rosada’ grapevine presented anisohydric behavior; (ii) deficit irrigation did not affect Ψ; (iii) Neither RDI nor PRD had a significant effect on water use efficiency (iv); no limitations by the carboxylation reactions of photosynthesis or Rubisco oxygenation (Vo1500) were observed, and photochemical capacity was not inhibited; (v) Light and dark leaf respiration rates were not affected by either RDI or PRD and therefore deficit irrigation did not damage the leaf carbon balance; (vi) a considerable volume of water was saved when deficit irrigation was used, without affecting production; (vii) TPC use can be an effective strategy for growing grapevine in tropical conditions.

Suggested Citation

  • da Silva, Jefferson Rangel & Rodrigues, Weverton Pereira & Ferreira, Luciene Souza & Bernado, Wallace de Paula & Paixão, Jéssica Sousa & Patterson, Angelica Eloisa & Ruas, Katherine Fraga & Viana, Lea, 2018. "Deficit irrigation and transparent plastic covers can save water and improve grapevine cultivation in the tropics," Agricultural Water Management, Elsevier, vol. 202(C), pages 66-80.
  • Handle: RePEc:eee:agiwat:v:202:y:2018:i:c:p:66-80
    DOI: 10.1016/j.agwat.2018.02.013
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377418300994
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2018.02.013?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Intrigliolo, D.S. & Castel, J.R., 2009. "Response of Vitis vinifera cv. 'Tempranillo' to partial rootzone drying in the field: Water relations, growth, yield and fruit and wine quality," Agricultural Water Management, Elsevier, vol. 96(2), pages 282-292, February.
    2. Green, S. R. & Clothier, B. E. & McLeod, D. J., 1997. "The response of sap flow in apple roots to localised irrigation," Agricultural Water Management, Elsevier, vol. 33(1), pages 63-78, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Calderón-Orellana, Arturo & Silva, Diego I. & Bastías, Richard M. & Bambach, Nicolás & Aburto, Felipe, 2021. "Late-season plastic covering delays the occurrence of severe water stress and improves intrinsic water use efficiency and fruit quality in kiwifruit vines," Agricultural Water Management, Elsevier, vol. 249(C).
    2. Bassoi, Luís Henrique & de Melo Chaves, Agnaldo Rodrigues & Teixeira, Rafael Pombo, 2021. "Responses of 'Syrah' grapevine to deficit irrigation in the Brazilian semi-arid region," Agricultural Water Management, Elsevier, vol. 258(C).
    3. Li, Xinxin & Liu, Hongguang & Li, Jing & He, Xinlin & Gong, Ping & Lin, En & Li, Kaiming & Li, Ling & Binley, Andrew, 2020. "Experimental study and multi–objective optimization for drip irrigation of grapes in arid areas of northwest China," Agricultural Water Management, Elsevier, vol. 232(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Phogat, V. & Skewes, M.A. & McCarthy, M.G. & Cox, J.W. & Šimůnek, J. & Petrie, P.R., 2017. "Evaluation of crop coefficients, water productivity, and water balance components for wine grapes irrigated at different deficit levels by a sub-surface drip," Agricultural Water Management, Elsevier, vol. 180(PA), pages 22-34.
    2. Jovanovic, N. & Pereira, L.S. & Paredes, P. & Pôças, I. & Cantore, V. & Todorovic, M., 2020. "A review of strategies, methods and technologies to reduce non-beneficial consumptive water use on farms considering the FAO56 methods," Agricultural Water Management, Elsevier, vol. 239(C).
    3. Trigo-Córdoba, Emiliano & Bouzas-Cid, Yolanda & Orriols-Fernández, Ignacio & Mirás-Avalos, José Manuel, 2015. "Effects of deficit irrigation on the performance of grapevine (Vitis vinifera L.) cv. ‘Godello’ and ‘Treixadura’ in Ribeiro, NW Spain," Agricultural Water Management, Elsevier, vol. 161(C), pages 20-30.
    4. Du, Shaoqing & Kang, Shaozhong & Li, Fusheng & Du, Taisheng, 2017. "Water use efficiency is improved by alternate partial root-zone irrigation of apple in arid northwest China," Agricultural Water Management, Elsevier, vol. 179(C), pages 184-192.
    5. Romero, Pascual & Navarro, Josefa María & Ordaz, Pablo Botía, 2022. "Towards a sustainable viticulture: The combination of deficit irrigation strategies and agroecological practices in Mediterranean vineyards. A review and update," Agricultural Water Management, Elsevier, vol. 259(C).
    6. Egea, Gregorio & Nortes, Pedro A. & González-Real, María M. & Baille, Alain & Domingo, Rafael, 2010. "Agronomic response and water productivity of almond trees under contrasted deficit irrigation regimes," Agricultural Water Management, Elsevier, vol. 97(1), pages 171-181, January.
    7. Reinhard NOLZ & Willibald LOISKANDL & Gerhard KAMMERER & Margarita L. HIMMELBAUER, 2016. "Survey of soil water distribution in a vineyard and implications for subsurface drip irrigation control," Soil and Water Research, Czech Academy of Agricultural Sciences, vol. 11(4), pages 250-258.
    8. Romero, Pascual & Muñoz, Rocío Gil & Fernández-Fernández, J.I. & del Amor, Francisco M. & Martínez-Cutillas, Adrián & García-García, José, 2015. "Improvement of yield and grape and wine composition in field-grown Monastrell grapevines by partial root zone irrigation, in comparison with regulated deficit irrigation," Agricultural Water Management, Elsevier, vol. 149(C), pages 55-73.
    9. Slamini, Maryam & Sbaa, Mohamed & Arabi, Mourad & Darmous, Ahmed, 2022. "Review on Partial Root-zone Drying irrigation: Impact on crop yield, soil and water pollution," Agricultural Water Management, Elsevier, vol. 271(C).
    10. Kizildeniz, T. & Pascual, I. & Irigoyen, J.J & Morales, F., 2018. "Using fruit-bearing cuttings of grapevine and temperature gradient greenhouses to evaluate effects of climate change (elevated CO2 and temperature, and water deficit) on the cv. red and white Temprani," Agricultural Water Management, Elsevier, vol. 202(C), pages 299-310.
    11. Cheng, Minghui & Wang, Haidong & Fan, Junliang & Zhang, Shaohui & Liao, Zhenqi & Zhang, Fucang & Wang, Yanli, 2021. "A global meta-analysis of yield and water use efficiency of crops, vegetables and fruits under full, deficit and alternate partial root-zone irrigation," Agricultural Water Management, Elsevier, vol. 248(C).
    12. Kizildeniz, T. & Mekni, I. & Santesteban, H. & Pascual, I. & Morales, F. & Irigoyen, J.J., 2015. "Effects of climate change including elevated CO2 concentration, temperature and water deficit on growth, water status, and yield quality of grapevine (Vitis vinifera L.) cultivars," Agricultural Water Management, Elsevier, vol. 159(C), pages 155-164.
    13. Egea, Gregorio & González-Real, María M. & Baille, Alain & Nortes, Pedro A. & Sánchez-Bel, Paloma & Domingo, Rafael, 2009. "The effects of contrasted deficit irrigation strategies on the fruit growth and kernel quality of mature almond trees," Agricultural Water Management, Elsevier, vol. 96(11), pages 1605-1614, November.
    14. Pascual Romero Azorín & José García García, 2020. "The Productive, Economic, and Social Efficiency of Vineyards Using Combined Drought-Tolerant Rootstocks and Efficient Low Water Volume Deficit Irrigation Techniques under Mediterranean Semiarid Condit," Sustainability, MDPI, vol. 12(5), pages 1-20, March.
    15. Wang, Di & Wang, Li, 2017. "Dynamics of evapotranspiration partitioning for apple trees of different ages in a semiarid region of northwest China," Agricultural Water Management, Elsevier, vol. 191(C), pages 1-15.
    16. Satchithanantham, S. & Krahn, V. & Sri Ranjan, R. & Sager, S., 2014. "Shallow groundwater uptake and irrigation water redistribution within the potato root zone," Agricultural Water Management, Elsevier, vol. 132(C), pages 101-110.
    17. Green, Steve R. & Kirkham, M.B. & Clothier, Brent E., 2006. "Root uptake and transpiration: From measurements and models to sustainable irrigation," Agricultural Water Management, Elsevier, vol. 86(1-2), pages 165-176, November.
    18. Bassoi, Luís Henrique & de Melo Chaves, Agnaldo Rodrigues & Teixeira, Rafael Pombo, 2021. "Responses of 'Syrah' grapevine to deficit irrigation in the Brazilian semi-arid region," Agricultural Water Management, Elsevier, vol. 258(C).
    19. Conesa, María R. & Falagán, Natalia & de la Rosa, José M. & Aguayo, Encarna & Domingo, Rafael & Pastor, Alejandro Pérez, 2016. "Post-veraison deficit irrigation regimes enhance berry coloration and health-promoting bioactive compounds in ‘Crimson Seedless’ table grapes," Agricultural Water Management, Elsevier, vol. 163(C), pages 9-18.
    20. Liu, Xiaozhi & Kang, Shaozhong & Li, Fusheng, 2009. "Simulation of artificial neural network model for trunk sap flow of Pyrus pyrifolia and its comparison with multiple-linear regression," Agricultural Water Management, Elsevier, vol. 96(6), pages 939-945, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:202:y:2018:i:c:p:66-80. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.