IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v195y2018icp71-83.html
   My bibliography  Save this article

Deficit irrigation provokes more pronounced responses of maize photosynthesis and water productivity to elevated CO2

Author

Listed:
  • Li, Xiaojie
  • Kang, Shaozhong
  • Zhang, Xiaotao
  • Li, Fusheng
  • Lu, Hongna

Abstract

It is very significant to study the impact of deficit irrigation on crop growth and water use under the future scenarios with elevated CO2 concentrations and reduced water availability. This study investigated the growth and yield differences of maize grown in a phytotron in response to elevated CO2 concentrations under different irrigation treatments. Two irrigation treatments were carried out: regular irrigation (RI) and deficit irrigation (DI), in which the irrigation amounts were respectively 100 and 70% of evapotranspiration (ET), with four CO2 concentrations (400, 550, 700, and 900μmolmol−1). Thus eight treatments, i.e. RI400, RI550, RI700, RI900, DI400, DI550, DI700, and DI900 were included in this study. Results show that, the relative reductions of stomatal conductance (gs) and transpiration rate (Tr) in response to elevated CO2 concentrations were higher under DI than RI, thus causing leaf temperature (Tleaf) rose higher under DI due to the transpiration cooling effect. As photosynthetic rate (Pn) and its physiological process were positively correlated with Tleaf, the relative increases of Pn and the resulting maximum leaf area index (LAImax), total dry matter weight (TDW), and grain yield (GY) react to elevated CO2 concentrations were higher under DI than RI, as well as the leaf water use efficiency (WUEL) and water productivity (WP). The DI900 treatment in which the irrigation amount was reduced by 30% only decreased the TDW and GY by 7 and 5% when compared with RI900. The variation of GY was consistent with the variation of kernels per ear (KPE), but was not directly related to hundred-grain weight (HGW). The above results show that when atmospheric CO2 concentrations rise in the future, deficit irrigation would be an effective way of saving water and would not only have a mitigating effect on water crises, but would also contribute to improving WP, which is more important in terms of actual production.

Suggested Citation

  • Li, Xiaojie & Kang, Shaozhong & Zhang, Xiaotao & Li, Fusheng & Lu, Hongna, 2018. "Deficit irrigation provokes more pronounced responses of maize photosynthesis and water productivity to elevated CO2," Agricultural Water Management, Elsevier, vol. 195(C), pages 71-83.
  • Handle: RePEc:eee:agiwat:v:195:y:2018:i:c:p:71-83
    DOI: 10.1016/j.agwat.2017.09.017
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377417303128
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2017.09.017?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Cantore, V. & Lechkar, O. & Karabulut, E. & Sellami, M.H. & Albrizio, R. & Boari, F. & Stellacci, A.M. & Todorovic, M., 2016. "Combined effect of deficit irrigation and strobilurin application on yield, fruit quality and water use efficiency of “cherry” tomato (Solanum lycopersicum L.)," Agricultural Water Management, Elsevier, vol. 167(C), pages 53-61.
    2. Li, Sien & Kang, Shaozhong & Li, Fusheng & Zhang, Lu, 2008. "Evapotranspiration and crop coefficient of spring maize with plastic mulch using eddy covariance in northwest China," Agricultural Water Management, Elsevier, vol. 95(11), pages 1214-1222, November.
    3. Xiaojun Guo & Jianbin Huang & Yong Luo & Zongci Zhao & Ying Xu, 2016. "Projection of precipitation extremes for eight global warming targets by 17 CMIP5 models," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 84(3), pages 2299-2319, December.
    4. Qiao, Yunzhou & Zhang, Huizhen & Dong, Baodi & Shi, Changhai & Li, Yuxin & Zhai, Hongmei & Liu, Mengyu, 2010. "Effects of elevated CO2 concentration on growth and water use efficiency of winter wheat under two soil water regimes," Agricultural Water Management, Elsevier, vol. 97(11), pages 1742-1748, November.
    5. Geerts, Sam & Raes, Dirk, 2009. "Deficit irrigation as an on-farm strategy to maximize crop water productivity in dry areas," Agricultural Water Management, Elsevier, vol. 96(9), pages 1275-1284, September.
    6. Saadi, Sameh & Todorovic, Mladen & Tanasijevic, Lazar & Pereira, Luis S. & Pizzigalli, Claudia & Lionello, Piero, 2015. "Climate change and Mediterranean agriculture: Impacts on winter wheat and tomato crop evapotranspiration, irrigation requirements and yield," Agricultural Water Management, Elsevier, vol. 147(C), pages 103-115.
    7. Islam, Adlul & Ahuja, Lajpat R. & Garcia, Luis A. & Ma, Liwang & Saseendran, Anapalli S. & Trout, Thomas J., 2012. "Modeling the impacts of climate change on irrigated corn production in the Central Great Plains," Agricultural Water Management, Elsevier, vol. 110(C), pages 94-108.
    8. Badr, M.A. & El-Tohamy, W.A. & Zaghloul, A.M., 2012. "Yield and water use efficiency of potato grown under different irrigation and nitrogen levels in an arid region," Agricultural Water Management, Elsevier, vol. 110(C), pages 9-15.
    9. Farre, Imma & Faci, Jose Maria, 2006. "Comparative response of maize (Zea mays L.) and sorghum (Sorghum bicolor L. Moench) to deficit irrigation in a Mediterranean environment," Agricultural Water Management, Elsevier, vol. 83(1-2), pages 135-143, May.
    10. Kang, Shaozhong & Hao, Xinmei & Du, Taisheng & Tong, Ling & Su, Xiaoling & Lu, Hongna & Li, Xiaolin & Huo, Zailin & Li, Sien & Ding, Risheng, 2017. "Improving agricultural water productivity to ensure food security in China under changing environment: From research to practice," Agricultural Water Management, Elsevier, vol. 179(C), pages 5-17.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Jintao & Kang, Shaozhong & Du, Taisheng & Tong, Ling & Ding, Risheng & Li, Sien, 2019. "Estimating the upper and lower limits of kernel weight under different water regimes in hybrid maize seed production," Agricultural Water Management, Elsevier, vol. 213(C), pages 128-134.
    2. Slamini, Maryam & Sbaa, Mohamed & Arabi, Mourad & Darmous, Ahmed, 2022. "Review on Partial Root-zone Drying irrigation: Impact on crop yield, soil and water pollution," Agricultural Water Management, Elsevier, vol. 271(C).
    3. Peng, Manman & Han, Wenting & Li, Chaoqun & Li, Guang & Yao, Xiaomin & Zhang, Mengfei, 2021. "Diurnal and seasonal CO2 exchange and yield of maize cropland under different irrigation treatments in semiarid Inner Mongolia," Agricultural Water Management, Elsevier, vol. 255(C).
    4. Coelho, Rubens Duarte & Lizcano, Jonathan Vásquez & da Silva Barros, Timóteo Herculino & da Silva Barbosa, Fernando & Leal, Daniel Philipe Veloso & da Costa Santos, Lucas & Ribeiro, Nathalia Lopes & J, 2019. "Effect of water stress on renewable energy from sugarcane biomass," Renewable and Sustainable Energy Reviews, Elsevier, vol. 103(C), pages 399-407.
    5. Yang, Xin & Zhang, Peng & Wei, Zhenhua & Liu, Jie & Hu, Xiaotao & Liu, Fulai, 2020. "Effects of CO2 fertilization on tomato fruit quality under reduced irrigation," Agricultural Water Management, Elsevier, vol. 230(C).
    6. Agossou Gadedjisso-Tossou & Tamara Avellán & Niels Schütze, 2019. "An Economic-Based Evaluation of Maize Production under Deficit and Supplemental Irrigation for Smallholder Farmers in Northern Togo, West Africa," Resources, MDPI, vol. 8(4), pages 1-11, November.
    7. Agami, Ramadan A. & Alamri, Saad A.M. & Abd El-Mageed, T.A. & Abousekken, M.S.M. & Hashem, Mohamed, 2018. "Role of exogenous nitrogen supply in alleviating the deficit irrigation stress in wheat plants," Agricultural Water Management, Elsevier, vol. 210(C), pages 261-270.
    8. Zhang, Junxiao & Wang, Qianqing & Xia, Guimin & Wu, Qi & Chi, Daocai, 2021. "Continuous regulated deficit irrigation enhances peanut water use efficiency and drought resistance," Agricultural Water Management, Elsevier, vol. 255(C).
    9. Lian, Huida & Qin, Cheng & He, Zhan & Niu, Jiayu & Zhang, Cong & Sang, Ting & Li, Hongbing & Zhang, Suiqi, 2020. "A synergistic increase in water and nitrogen use efficiencies in winter wheat cultivars released between the 1940s and the 2010s for cultivation in the drylands of the shaanxi Province in China," Agricultural Water Management, Elsevier, vol. 240(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Manning, Dale T. & Lurbé, Salvador & Comas, Louise H. & Trout, Thomas J. & Flynn, Nora & Fonte, Steven J., 2018. "Economic viability of deficit irrigation in the Western US," Agricultural Water Management, Elsevier, vol. 196(C), pages 114-123.
    2. Shi, Rongchao & Wang, Jintao & Tong, Ling & Du, Taisheng & Shukla, Manoj Kumar & Jiang, Xuelian & Li, Donghao & Qin, Yonghui & He, Liuyue & Bai, Xiaorui & Guo, Xiaoxu, 2022. "Optimizing planting density and irrigation depth of hybrid maize seed production under limited water availability," Agricultural Water Management, Elsevier, vol. 271(C).
    3. Koffi Djaman & Suat Irmak & Komlan Koudahe & Samuel Allen, 2021. "Irrigation Management in Potato ( Solanum tuberosum L.) Production: A Review," Sustainability, MDPI, vol. 13(3), pages 1-19, February.
    4. Jovanovic, N. & Pereira, L.S. & Paredes, P. & Pôças, I. & Cantore, V. & Todorovic, M., 2020. "A review of strategies, methods and technologies to reduce non-beneficial consumptive water use on farms considering the FAO56 methods," Agricultural Water Management, Elsevier, vol. 239(C).
    5. Li, Xiaolin & Tong, Ling & Niu, Jun & Kang, Shaozhong & Du, Taisheng & Li, Sien & Ding, Risheng, 2017. "Spatio-temporal distribution of irrigation water productivity and its driving factors for cereal crops in Hexi Corridor, Northwest China," Agricultural Water Management, Elsevier, vol. 179(C), pages 55-63.
    6. Trevor W. Crosby & Yi Wang, 2021. "Effects of Different Irrigation Management Practices on Potato ( Solanum tuberosum L.)," Sustainability, MDPI, vol. 13(18), pages 1-19, September.
    7. Comas, Louise H. & Trout, Thomas J. & DeJonge, Kendall C. & Zhang, Huihui & Gleason, Sean M., 2019. "Water productivity under strategic growth stage-based deficit irrigation in maize," Agricultural Water Management, Elsevier, vol. 212(C), pages 433-440.
    8. Feng Wang & Jun Xue & Ruizhi Xie & Bo Ming & Keru Wang & Peng Hou & Lizhen Zhang & Shaokun Li, 2022. "Assessing Growth and Water Productivity for Drip-Irrigated Maize under High Plant Density in Arid to Semi-Humid Climates," Agriculture, MDPI, vol. 12(1), pages 1-16, January.
    9. Neal, J.S. & Fulkerson, W.J. & Hacker, R.B., 2011. "Differences in water use efficiency among annual forages used by the dairy industry under optimum and deficit irrigation," Agricultural Water Management, Elsevier, vol. 98(5), pages 759-774, March.
    10. Ignacio Lorite & Margarita García-Vila & María-Ascensión Carmona & Cristina Santos & María-Auxiliadora Soriano, 2012. "Assessment of the Irrigation Advisory Services’ Recommendations and Farmers’ Irrigation Management: A Case Study in Southern Spain," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(8), pages 2397-2419, June.
    11. Chen, Yang & Wang, Lu & Tong, Ling & Hao, Xinmei & Wu, Xuanyi & Ding, Risheng & Kang, Shaozhong & Li, Sien, 2023. "Effects of biochar addition and deficit irrigation with brackish water on yield-scaled N2O emissions under drip irrigation with mulching," Agricultural Water Management, Elsevier, vol. 277(C).
    12. Lu, Junsheng & Xiang, Youzhen & Fan, Junliang & Zhang, Fucang & Hu, Tiantian, 2021. "Sustainable high grain yield, nitrogen use efficiency and water productivity can be achieved in wheat-maize rotation system by changing irrigation and fertilization strategy," Agricultural Water Management, Elsevier, vol. 258(C).
    13. Wu, Hui & Yue, Qiong & Guo, Ping & Xu, Xiaoyu & Huang, Xi, 2022. "Improving the AquaCrop model to achieve direct simulation of evapotranspiration under nitrogen stress and joint simulation-optimization of irrigation and fertilizer schedules," Agricultural Water Management, Elsevier, vol. 266(C).
    14. Tang, Jianzhao & Xiao, Dengpan & Wang, Jing & Fang, Quanxiao & Zhang, Jun & Bai, Huizi, 2021. "Optimizing water and nitrogen managements for potato production in the agro-pastoral ecotone in North China," Agricultural Water Management, Elsevier, vol. 253(C).
    15. Hao, Baozhen & Xue, Qingwu & Marek, Thomas H. & Jessup, Kirk E. & Hou, Xiaobo & Xu, Wenwei & Bynum, Edsel D. & Bean, Brent W., 2015. "Soil water extraction, water use, and grain yield by drought-tolerant maize on the Texas High Plains," Agricultural Water Management, Elsevier, vol. 155(C), pages 11-21.
    16. Minhas, P.S. & Ramos, Tiago B. & Ben-Gal, Alon & Pereira, Luis S., 2020. "Coping with salinity in irrigated agriculture: Crop evapotranspiration and water management issues," Agricultural Water Management, Elsevier, vol. 227(C).
    17. Wang, Xiukang & Guo, Tao & Wang, Yi & Xing, Yingying & Wang, Yanfeng & He, Xiaolong, 2020. "Exploring the optimization of water and fertilizer management practices for potato production in the sandy loam soils of Northwest China based on PCA," Agricultural Water Management, Elsevier, vol. 237(C).
    18. Li, Xiaojie & Kang, Shaozhong & Li, Fusheng & Jiang, Xuelian & Tong, Ling & Ding, Risheng & Li, Sien & Du, Taisheng, 2016. "Applying segmented Jarvis canopy resistance into Penman-Monteith model improves the accuracy of estimated evapotranspiration in maize for seed production with film-mulching in arid area," Agricultural Water Management, Elsevier, vol. 178(C), pages 314-324.
    19. Wang, Yufeng & Kang, Shaozhong & Li, Fusheng & Zhang, Xiaotao, 2021. "Modified water-nitrogen productivity function based on response of water sensitive index to nitrogen for hybrid maize under drip fertigation," Agricultural Water Management, Elsevier, vol. 245(C).
    20. He, Rui & He, Min & Xu, Haidong & Zhang, Kun & Zhang, Mingcai & Ren, Dan & Li, Zhaohu & Zhou, Yuyi & Duan, Liusheng, 2023. "A novel plant growth regulator brazide improved maize water productivity in the arid region of Northwest China," Agricultural Water Management, Elsevier, vol. 287(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:195:y:2018:i:c:p:71-83. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.