IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v177y2016icp46-53.html
   My bibliography  Save this article

Irrigation response and water productivity of deficit to fully irrigated spring camelina

Author

Listed:
  • Hergert, G.W.
  • Margheim, J.F.
  • Pavlista, A.D.
  • Martin, D.L.
  • Isbell, T.A.
  • Supalla, R.J.

Abstract

Camelina [Camelina sativa L. Crantz] is an oil seed crop that could be adapted to the northern High Plains of the USA as a biofuel crop. Decreased ground water allocations in Nebraska necessitated determining the impact of limited irrigation on camelina. The objective of this research was to determine the effects of a range of irrigation levels on camelina yield, oil content, soil water changes and water productivity. The study was conducted for four growing seasons at two locations in western Nebraska. One site had a sandy soil whereas the other was a silt loam. Camelina was planted in early to mid-April. Cumulative irrigation treatments were 0, 100, 200, and 300mm with the highest rate adjusted to be non-ET limiting. Camelina extracted soil water from 0.9 to 1m depths which was shallower than canola. It showed significant response to irrigation during dry years but no response in above-average precipitation years. A water use efficiency of 7.0kg mm-1 with 125mm ETc required to produce the first unit of seed yield was shown. Camelina seed yield ranged from 428 to 2867kg ha-1 with 187 and 536mm of cumulative ET. In 2007 and 2008 camelina exhibited peak values in water consumed at 9–10 weeks after planting. Deficit irrigation reduced ET and yield plus accelerated maturity in those years. Oil content was increased by irrigation during drier years with no effect with high growing season precipitation. Oil content ranged from 25 to 50% depending on year, irrigation level and disease. Downey mildew significantly reduced oil content during 2009. Deficit irrigated camelina could be an alternative biofuel crop for this region but further genetic improvement would enhance its competiveness with spring canola.

Suggested Citation

  • Hergert, G.W. & Margheim, J.F. & Pavlista, A.D. & Martin, D.L. & Isbell, T.A. & Supalla, R.J., 2016. "Irrigation response and water productivity of deficit to fully irrigated spring camelina," Agricultural Water Management, Elsevier, vol. 177(C), pages 46-53.
  • Handle: RePEc:eee:agiwat:v:177:y:2016:i:c:p:46-53
    DOI: 10.1016/j.agwat.2016.06.009
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377416302141
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2016.06.009?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gan, Y. & Campbell, C.A. & Liu, L. & Basnyat, P. & McDonald, C.L., 2009. "Water use and distribution profile under pulse and oilseed crops in semiarid northern high latitude areas," Agricultural Water Management, Elsevier, vol. 96(2), pages 337-348, February.
    2. Kamkar, B. & Daneshmand, A.R. & Ghooshchi, F. & Shiranirad, A.H. & Safahani Langeroudi, A.R., 2011. "The effects of irrigation regimes and nitrogen rates on some agronomic traits of canola under a semiarid environment," Agricultural Water Management, Elsevier, vol. 98(6), pages 1005-1012, April.
    3. Payero, Jose O. & Melvin, Steven R. & Irmak, Suat & Tarkalson, David, 2006. "Yield response of corn to deficit irrigation in a semiarid climate," Agricultural Water Management, Elsevier, vol. 84(1-2), pages 101-112, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Singh, Samar Pal & Mahapatra, B.S. & Pramanick, Biswajit & Yadav, Vimal Raj, 2021. "Effect of irrigation levels, planting methods and mulching on nutrient uptake, yield, quality, water and fertilizer productivity of field mustard (Brassica rapa L.) under sandy loam soil," Agricultural Water Management, Elsevier, vol. 244(C).
    2. Pulighe, Giuseppe & Pirelli, Tiziana, 2023. "Assessing the sustainability of bioenergy pathways through a land-water-energy nexus approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 184(C).
    3. Agossou Gadedjisso-Tossou & Tamara Avellán & Niels Schütze, 2019. "An Economic-Based Evaluation of Maize Production under Deficit and Supplemental Irrigation for Smallholder Farmers in Northern Togo, West Africa," Resources, MDPI, vol. 8(4), pages 1-11, November.
    4. Haghverdi, Amir & Yonts, C. Dean & Reichert, David L. & Irmak, Suat, 2017. "Impact of irrigation, surface residue cover and plant population on sugarbeet growth and yield, irrigation water use efficiency and soil water dynamics," Agricultural Water Management, Elsevier, vol. 180(PA), pages 1-12.
    5. Li, Weiwei & Xiong, Li & Wang, Changjiang & Liao, Yuncheng & Wu, Wei, 2019. "Optimized ridge–furrow with plastic film mulching system to use precipitation efficiently for winter wheat production in dry semi–humid areas," Agricultural Water Management, Elsevier, vol. 218(C), pages 211-221.
    6. Katuwal, Krishna B. & Cho, Youngkoo & Singh, Sukhbir & Angadi, Sangamesh V. & Begna, Sultan & Stamm, Michael, 2020. "Soil water extraction pattern and water use efficiency of spring canola under growth-stage-based irrigation management," Agricultural Water Management, Elsevier, vol. 239(C).
    7. Mohtashami, Raham & Movahhedi Dehnavi, Mohsen & Balouchi, Hamidreza & Faraji, Hooshang, 2020. "Improving yield, oil content and water productivity of dryland canola by supplementary irrigation and selenium spraying," Agricultural Water Management, Elsevier, vol. 232(C).
    8. Yonts, C. Dean & Haghverdi, Amir & Reichert, David L. & Irmak, Suat, 2018. "Deficit irrigation and surface residue cover effects on dry bean yield, in-season soil water content and irrigation water use efficiency in western Nebraska high plains," Agricultural Water Management, Elsevier, vol. 199(C), pages 138-147.
    9. Tinashe Lindel Dirwai & Aidan Senzanje & Tafadzwanashe Mabhaudhi, 2021. "Calibration and Evaluation of the FAO AquaCrop Model for Canola ( Brassica napus ) under Varied Moistube Irrigation Regimes," Agriculture, MDPI, vol. 11(5), pages 1-18, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hergert, G.W. & Margheim, J.F. & Pavlista, A.D. & Martin, D.L. & Supalla, R.J. & Isbell, T.A., 2016. "Yield, irrigation response, and water productivity of deficit to fully irrigated spring canola," Agricultural Water Management, Elsevier, vol. 168(C), pages 96-103.
    2. Gheysari, Mahdi & Mirlatifi, Seyed Majid & Bannayan, Mohammad & Homaee, Mehdi & Hoogenboom, Gerrit, 2009. "Interaction of water and nitrogen on maize grown for silage," Agricultural Water Management, Elsevier, vol. 96(5), pages 809-821, May.
    3. Saseendran, S.A. & Ahuja, Lajpat R. & Ma, Liwang & Trout, Thomas J. & McMaster, Gregory S. & Nielsen, David C. & Ham, Jay M. & Andales, Allan A. & Halvorson, Ardel D. & Chávez, José L. & Fang, Quanxia, 2015. "Developing and normalizing average corn crop water production functions across years and locations using a system model," Agricultural Water Management, Elsevier, vol. 157(C), pages 65-77.
    4. Shuang Liu & Yuru Gao & Huilin Lang & Yong Liu & Hong Zhang, 2022. "Effects of Conventional Tillage and No-Tillage Systems on Maize ( Zea mays L.) Growth and Yield, Soil Structure, and Water in Loess Plateau of China: Field Experiment and Modeling Studies," Land, MDPI, vol. 11(11), pages 1-14, October.
    5. Murley, Cameron B. & Sharma, Sumit & Warren, Jason G. & Arnall, Daryl B. & Raun, William R., 2018. "Yield response of corn and grain sorghum to row offsets on subsurface drip laterals," Agricultural Water Management, Elsevier, vol. 208(C), pages 357-362.
    6. Comas, Louise H. & Trout, Thomas J. & DeJonge, Kendall C. & Zhang, Huihui & Gleason, Sean M., 2019. "Water productivity under strategic growth stage-based deficit irrigation in maize," Agricultural Water Management, Elsevier, vol. 212(C), pages 433-440.
    7. Eric J Belasco & Joseph Cooper & Vincent H Smith, 2020. "The Development of a Weather‐based Crop Disaster Program," American Journal of Agricultural Economics, John Wiley & Sons, vol. 102(1), pages 240-258, January.
    8. Tarkalson, David D. & King, Bradley A. & Bjorneberg, Dave L., 2022. "Maize grain yield and crop water productivity functions in the arid Northwest U.S," Agricultural Water Management, Elsevier, vol. 264(C).
    9. Kukal, M.S. & Irmak, S., 2020. "Impact of irrigation on interannual variability in United States agricultural productivity," Agricultural Water Management, Elsevier, vol. 234(C).
    10. Ivana Bajić & Borivoj Pejić & Vladimir Sikora & Mirjana Kostić & Aleksandra Ivanovska & Biljana Pejić & Bojan Vojnov, 2022. "The Effects of Irrigation, Topping, and Interrow Spacing on the Yield and Quality of Hemp ( Cannabis sativa L.) Fibers in Temperate Climatic Conditions," Agriculture, MDPI, vol. 12(11), pages 1-17, November.
    11. Wang, Feng & Meng, Haofeng & Xie, Ruizhi & Wang, Keru & Ming, Bo & Hou, Peng & Xue, Jun & Li, Shaokun, 2023. "Optimizing deficit irrigation and regulated deficit irrigation methods increases water productivity in maize," Agricultural Water Management, Elsevier, vol. 280(C).
    12. Qin, Shujing & Li, Sien & Kang, Shaozhong & Du, Taisheng & Tong, Ling & Ding, Risheng & Wang, Yahui & Guo, Hui, 2019. "Transpiration of female and male parents of seed maize in northwest China," Agricultural Water Management, Elsevier, vol. 213(C), pages 397-409.
    13. Zou, Haiyang & Fan, Junliang & Zhang, Fucang & Xiang, Youzhen & Wu, Lifeng & Yan, Shicheng, 2020. "Optimization of drip irrigation and fertilization regimes for high grain yield, crop water productivity and economic benefits of spring maize in Northwest China," Agricultural Water Management, Elsevier, vol. 230(C).
    14. Karandish, Fatemeh & Šimůnek, Jiří, 2016. "A field-modeling study for assessing temporal variations of soil-water-crop interactions under water-saving irrigation strategies," Agricultural Water Management, Elsevier, vol. 178(C), pages 291-303.
    15. Carlos Bautista-Capetillo & Hugo Márquez-Villagrana & Anuard Pacheco-Guerrero & Julián González-Trinidad & Hugo Júnez-Ferreira & Manuel Zavala-Trejo, 2018. "Cropping System Diversification: Water Consumption against Crop Production," Sustainability, MDPI, vol. 10(7), pages 1-11, June.
    16. Kukal, M.S. & Irmak, S., 2020. "Characterization of water use and productivity dynamics across four C3 and C4 row crops under optimal growth conditions," Agricultural Water Management, Elsevier, vol. 227(C).
    17. Araya, A. & Gowda, P.H. & Golden, B. & Foster, A.J. & Aguilar, J. & Currie, R. & Ciampitti, I.A. & Prasad, P.V.V., 2019. "Economic value and water productivity of major irrigated crops in the Ogallala aquifer region," Agricultural Water Management, Elsevier, vol. 214(C), pages 55-63.
    18. Benjamin, J.G. & Nielsen, D.C. & Vigil, M.F. & Mikha, M.M. & Calderon, F., 2015. "Cumulative deficit irrigation effects on corn biomass and grain yield under two tillage systems," Agricultural Water Management, Elsevier, vol. 159(C), pages 107-114.
    19. Montoya, F. & García, C. & Pintos, F. & Otero, A., 2017. "Effects of irrigation regime on the growth and yield of irrigated soybean in temperate humid climatic conditions," Agricultural Water Management, Elsevier, vol. 193(C), pages 30-45.
    20. Sharma, Vasudha & Irmak, Suat, 2021. "Comparative analyses of variable and fixed rate irrigation and nitrogen management for maize in different soil types: Part II. Growth, grain yield, evapotranspiration, production functions and water p," Agricultural Water Management, Elsevier, vol. 246(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:177:y:2016:i:c:p:46-53. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.