IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v159y2015icp277-289.html
   My bibliography  Save this article

The MANAGE Drain Load database: Review and compilation of more than fifty years of North American drainage nutrient studies

Author

Listed:
  • Christianson, L.E.
  • Harmel, R.D.

Abstract

As agriculture in the 21st century is faced with increasing pressure to reduce negative environmental impacts while continuing to efficiently produce food, fiber, and fuel, it becomes ever more important to reflect upon more than half a century of drainage water quality research to identify paths forward. This work provided a quantitative review of the water quality and crop yield impacts of artificially drained agronomic systems across North America by compiling data from drainage nutrient studies in the “Measured Annual Nutrient loads from AGricultural Environments” (MANAGE) database. Of the nearly 400 studies reviewed, 91 individual journal publications and 1279 site-years were included in the new MANAGE Drain Load table with data spanning 1961–2012. Across site-years, the mean and median percent of precipitation occurring as drainage were 25 and 20%, respectively, with wet years resulting in significantly greater drainage discharge and nutrient loads. Water quality and crop yield impacts due to management factors such as cropping system, tillage, and drainage design were investigated. This work provided an important opportunity to evaluate gaps in drainage nutrient research. In addition to the current analyses, the resulting MANAGE drainage database will facilitate further analyses and improved understanding of the agronomic and environmental impacts of artificial drainage.

Suggested Citation

  • Christianson, L.E. & Harmel, R.D., 2015. "The MANAGE Drain Load database: Review and compilation of more than fifty years of North American drainage nutrient studies," Agricultural Water Management, Elsevier, vol. 159(C), pages 277-289.
  • Handle: RePEc:eee:agiwat:v:159:y:2015:i:c:p:277-289
    DOI: 10.1016/j.agwat.2015.06.021
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377415300408
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2015.06.021?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ball Coelho, B. & Murray, R. & Lapen, D. & Topp, E. & Bruin, A., 2012. "Phosphorus and sediment loading to surface waters from liquid swine manure application under different drainage and tillage practices," Agricultural Water Management, Elsevier, vol. 104(C), pages 51-61.
    2. Roberts, G. & Hudson, J. A. & Blackie, J. R., 1986. "Effect of upland pasture improvement on nutrient release in flow from a `natural' lysimeter and a field drain," Agricultural Water Management, Elsevier, vol. 11(3-4), pages 231-245, September.
    3. Ball Coelho, B. & Lapen, D. & Murray, R. & Topp, E. & Bruin, A. & Khan, B., 2012. "Nitrogen loading to offsite waters from liquid swine manure application under different drainage and tillage practices," Agricultural Water Management, Elsevier, vol. 104(C), pages 40-50.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ojeda, Jonathan J. & Volenec, Jeffrey J. & Brouder, Sylvie M. & Caviglia, Octavio P. & Agnusdei, Mónica G., 2018. "Modelling stover and grain yields, and subsurface artificial drainage from long-term corn rotations using APSIM," Agricultural Water Management, Elsevier, vol. 195(C), pages 154-171.
    2. Jouni, Hamidreza Javani & Liaghat, Abdolmajid & Hassanoghli, Alireza & Henk, Ritzema, 2018. "Managing controlled drainage in irrigated farmers’ fields: A case study in the Moghan plain, Iran," Agricultural Water Management, Elsevier, vol. 208(C), pages 393-405.
    3. Daly, K. & Tuohy, P. & Peyton, D. & Wall, D.P. & Fenton, O., 2017. "Field soil and ditch sediment phosphorus dynamics from two artificially drained fields on poorly drained soils," Agricultural Water Management, Elsevier, vol. 192(C), pages 115-125.
    4. Giovani Preza-Fontes & Junming Wang & Muhammad Umar & Meilan Qi & Kamaljit Banger & Cameron Pittelkow & Emerson Nafziger, 2021. "Development of an Online Tool for Tracking Soil Nitrogen to Improve the Environmental Performance of Maize Production," Sustainability, MDPI, vol. 13(10), pages 1-14, May.
    5. Miller, Samuel A. & Witter, Jonathan D. & Lyon, Steve W., 2022. "The impact of automated drainage water management on groundwater, soil moisture, and tile outlet discharge following storm events," Agricultural Water Management, Elsevier, vol. 272(C).
    6. Hertzberger, A. & Pittelkow, C.M. & Harmel, R.D. & Christianson, L.E., 2019. "The MANAGE Drain Concentration database: A new tool compiling North American drainage nutrient concentrations," Agricultural Water Management, Elsevier, vol. 216(C), pages 113-117.
    7. Sunohara, Mark D. & Gottschall, Natalie & Craiovan, Emilia & Wilkes, Graham & Topp, Edward & Frey, Steven K. & Lapen, David R., 2016. "Controlling tile drainage during the growing season in Eastern Canada to reduce nitrogen, phosphorus, and bacteria loading to surface water," Agricultural Water Management, Elsevier, vol. 178(C), pages 159-170.
    8. Liu, Wenlong & Youssef, Mohamed A. & Birgand, François P. & Chescheir, George M. & Tian, Shiying & Maxwell, Bryan M., 2020. "Processes and mechanisms controlling nitrate dynamics in an artificially drained field: Insights from high-frequency water quality measurements," Agricultural Water Management, Elsevier, vol. 232(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ramesh P. Rudra & Balew A. Mekonnen & Rituraj Shukla & Narayan Kumar Shrestha & Pradeep K. Goel & Prasad Daggupati & Asim Biswas, 2020. "Currents Status, Challenges, and Future Directions in Identifying Critical Source Areas for Non-Point Source Pollution in Canadian Conditions," Agriculture, MDPI, vol. 10(10), pages 1-25, October.
    2. Liu, Jian & Elliott, Jane A. & Wilson, Henry F. & Macrae, Merrin L. & Baulch, Helen M. & Lobb, David A., 2021. "Phosphorus runoff from Canadian agricultural land: A cross-region synthesis of edge-of-field results," Agricultural Water Management, Elsevier, vol. 255(C).
    3. Jouni, Hamidreza Javani & Liaghat, Abdolmajid & Hassanoghli, Alireza & Henk, Ritzema, 2018. "Managing controlled drainage in irrigated farmers’ fields: A case study in the Moghan plain, Iran," Agricultural Water Management, Elsevier, vol. 208(C), pages 393-405.
    4. Van Zandvoort, Alisha & Clark, Ian D. & Flemming, Corey & Craiovan, Emilia & Sunohara, Mark D. & Gottschall, Natalie & Boutz, Ronda & Lapen, David R., 2017. "Using 13C isotopic analysis to assess soil carbon pools associated with tile drainage management during drier and wetter growing seasons," Agricultural Water Management, Elsevier, vol. 192(C), pages 232-243.
    5. Lu, Shenglan & Andersen​, Hans Estrup & Thodsen, Hans & Rubæk, Gitte Holton & Trolle, Dennis, 2016. "Extended SWAT model for dissolved reactive phosphorus transport in tile-drained fields and catchments," Agricultural Water Management, Elsevier, vol. 175(C), pages 78-90.
    6. Nazari, Saeid & Ford, William I. & King, Kevin W., 2022. "Impact of flow pathway and source water connectivity on subsurface sediment and particulate phosphorus dynamics in tile-drained agroecosystems," Agricultural Water Management, Elsevier, vol. 269(C).
    7. Sunohara, Mark D. & Gottschall, Natalie & Craiovan, Emilia & Wilkes, Graham & Topp, Edward & Frey, Steven K. & Lapen, David R., 2016. "Controlling tile drainage during the growing season in Eastern Canada to reduce nitrogen, phosphorus, and bacteria loading to surface water," Agricultural Water Management, Elsevier, vol. 178(C), pages 159-170.
    8. Lozier, T.M. & Macrae, M.L. & Brunke, R. & Van Eerd, L.L., 2017. "Release of phosphorus from crop residue and cover crops over the non-growing season in a cool temperate region," Agricultural Water Management, Elsevier, vol. 189(C), pages 39-51.
    9. Yang, Yuangen & He, Zhenli & Wang, Yanbo & Fan, Jinghua & Liang, Zhanbei & Stoffella, Peter J., 2013. "Dissolved organic matter in relation to nutrients (N and P) and heavy metals in surface runoff water as affected by temporal variation and land uses – A case study from Indian River Area, south Florid," Agricultural Water Management, Elsevier, vol. 118(C), pages 38-49.
    10. Reynolds, B. & Edwards, A., 1995. "Factors influencing dissolved nitrogen concentrations and loadings in upland streams of the UK," Agricultural Water Management, Elsevier, vol. 27(3-4), pages 181-202, July.
    11. Barbara Kęsicka & Rafał Stasik & Michał Kozłowski & Adam Choryński, 2023. "Is Controlled Drainage of Agricultural Land a Common Used Practice?—A Bibliographic Analysis," Land, MDPI, vol. 12(9), pages 1-17, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:159:y:2015:i:c:p:277-289. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.