Advanced Search
MyIDEAS: Login to save this article or follow this journal

Phosphorus and sediment loading to surface waters from liquid swine manure application under different drainage and tillage practices

Contents:

Author Info

  • Ball Coelho, B.
  • Murray, R.
  • Lapen, D.
  • Topp, E.
  • Bruin, A.
Registered author(s):

    Abstract

    Phosphorus (P) and sediment can move from agricultural land to surface waters, deteriorating its quality. This study was undertaken to improve understanding of partitioning of P and sediment to surface water via overland runoff and underground drainage pathways, and identify control measures. Over two full years, and including important winter events, P and sediment load overland and through tile were quantified from micro-catchments with relevant drainage and management practices imposed. Crop nutrients were supplied by liquid swine manure, either injected under minimum tillage management or surface-applied and incorporated under conventional till. Winters were temporally important for loadings from both runoff and drainage tile, particularly during rain on snow. A single event of 50mm rain on snow over 2 days contributed more than 80% of the Pdop (dissolved organic+particulate P) and sediment that moved overland, and contributed 28% of Pdop and 20% of the sediment that moved through drainage tile during that season. Loads of P and sediment in both overland runoff and tile drainage were greater in non-growing seasons (NGSs) than growing seasons (GSs). For example, loading overland averaged 0.14kgha−1 dissolved reactive phosphate (DRP) and 1551kgha−1 sediment in NGSs, and 0.04kgha−1 DRP and 42kgha−1 sediment in GSs (four catchments, two seasons, runoff DRP first GS only). Through drainage tile, DRP load averaged 0.08kgha−1 in NGSs and 0.01kgha−1 in GSs from one field, A, and 0.02kgha−1 in NGSs and 0.003kgha−1 in GSs from another field, B; Pdop load was 0.07kgha−1 in NGSs and 0.02kgha−1 in GSs, similar from both Fields A and B; and sediment load was 23kgha−1 in NGSs from Field A, 8kgha−1 in NGSs from Field B, and 2kgha−1 in GSs from both fields. It is therefore important to manage movement during NGSs, particularly when runoff occurs over frozen soil. Movement through drainage tile comprised 31, 24 and 16% of the overland+subsurface DRP, total P (Pt) and sediment loads, respectively. Presence or type (blind inlet or hickenbottom) of surface inlet had little impact on P and sediment loading. Artificial drainage reduced overland+subsurface load to surface water to one-third for Pt and one-tenth for sediment, and is therefore a suitable strategy for controlling both P and turbidity in surface water. Overland+subsurface DRP load was unchanged by artificial drainage. Preferential flow of liquid swine manure to drainage tile only occurred with injection, in the year the drains were installed, in one of two fields. Along with being infrequent, the incidental DRP load through tile drains comprised only 2% of the annual Pt load from the catchment. The associated minimum tillage system reduced overland Pt and sediment runoff load 3- and 6-fold, respectively, relative to conventional till with broadcast incorporated manure.

    Download Info

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
    File URL: http://www.sciencedirect.com/science/article/pii/S0378377411002927
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

    Bibliographic Info

    Article provided by Elsevier in its journal Agricultural Water Management.

    Volume (Year): 104 (2012)
    Issue (Month): C ()
    Pages: 51-61

    as in new window
    Handle: RePEc:eee:agiwat:v:104:y:2012:i:c:p:51-61

    Contact details of provider:
    Web page: http://www.elsevier.com/locate/agwat

    Related research

    Keywords: Blind inlet; Hickenbottom; Preferential flow; Runoff; Surface inlet; Tile drainage; Tillage;

    References

    No references listed on IDEAS
    You can help add them by filling out this form.

    Citations

    Lists

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    Statistics

    Access and download statistics

    Corrections

    When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:104:y:2012:i:c:p:51-61. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Zhang, Lei).

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.